Data Driven Flavour Model

F. Arias-Aragon, C. Bouthelier-Madre, J.M. Cano, L. Merlo

The flavour puzzle

- Naturalness issue, in a nutshell

Why SM fermions couple the way they do to the Higgs?

- Theoretically challenging to address, simple BSM extensions typically induce large rates of flavour violating processes already ruled out by experiment (e.g., FCNC)
- Many proposals in the literature with symmetry as the unifying thread: discrete or continuous, abelian or non-abelian, global or local...

- But always a top-down approach! The Data Driven Flavour Model (DDFM) is an attempt at a bottom-up, strictly data driven solution.

The idea

- Follow experimental observations! Only the top quark Yukawa and, if existing, the RH neutrino Majorana mass terms should appear in the Lagrangian at the renormalisable level.

This is guaranteed by the flavour symmetry, present at all orders in the EFT expansion. The rest of the Yukawa's appear suppressed as dim. 5 operators, made invariant by the insertion of spurion fields transforming under the flavour group.

Lepton sector

Lepton flavour symmetry subgroup				
$\begin{aligned} \mathcal{G}_{\ell}^{\mathrm{EFC}}=S U(3)_{\ell_{L}} \times & S U(2)_{e_{R}} \times S O(3)_{N_{R}} \\ & \text { Fields } \end{aligned}$				
	L_{L}^{\prime}	3	1	1
$\stackrel{\square}{8}$	E_{R}^{\prime}	1	2	1
은	τ_{R}^{\prime}	1	1	1
	N_{R}^{\prime}	1	1	3
	$\Delta \mathcal{Y}_{E}$	3	$\overline{2}$	1
을	y_{E}	3	1	1
a	\mathcal{Y}_{ν}	3	1	3

Similar to the type-I Seesaw MLFV [Cirigliano et al.], but different for the τ ! In MLFV these ratios have less freedom [Dihn et al.].

Flavon scalar potential

- Promoting the spurions to flavons, the minimisation of the scalar potential can provide a dynamical (albeit fine-tuned) solution to the flavour puzzle, compatible with the full structure of fermion masses and mixings (and certain Majorana phases are predicted!).

$$
A_{V}=\operatorname{Tr}\left(\Delta y_{v} \Delta y_{t}^{\dagger}\right) \quad A_{D}=\operatorname{Tr}\left(\Delta y_{D} \Delta y_{D}^{t}\right)
$$

$$
A_{v U}=\operatorname{Tr}\left(\Delta y_{v} \Delta y_{v}^{t} \Delta y_{v} \Delta y_{t}^{t}\right) \quad A_{D D}=\operatorname{Tr}\left(\Delta y_{D} \Delta y_{D}^{t} \Delta y_{D} \Delta y_{D}^{t}\right)
$$

$$
A_{U D}=\operatorname{Tr}\left(\Delta y_{U} \Delta y_{U}^{\dagger} \Delta y_{D} \Delta y_{D}^{\dagger}\right)
$$

$$
B_{D}=\mathrm{y}_{D} \mathrm{y}_{D}^{\dagger} \quad B_{D D}=\mathrm{y}_{D} \Delta y_{D}^{\dagger} \Delta y_{D} \mathrm{y}_{D}^{\dagger} \quad D_{U}=\operatorname{det}\left(\Delta y_{U}\right) \quad B_{E}=\mathrm{y}_{E} \mathrm{y}_{E}^{\dagger} \quad B_{E E}=\mathrm{y}_{E}^{\dagger} \Delta y_{E} \Delta y_{E}^{\dagger} \mathrm{y}_{E} \quad B_{E \nu}=\mathrm{y}_{E}^{\dagger} y_{\nu} \mathrm{y}_{\nu}^{\dagger} \mathrm{y}_{E}
$$

In contrast to MFV, where fully realistic solutions are not possible! [Alonso et al. 1, 2]

2021

