Vector like dark matter and flavor anomalies in leptoquark model

Suchismita Sahoo*1, Shivaramakrishna Singirala ${ }^{2}$ and Rukmani Mohanta ${ }^{2}$

1. Department of Physics, Central University of Karnataka, Kalaburagi-585367, India
2. School of Physics, University of Hyderabad, Hyderabad 500046, India

Abstract

\section*{Abstract} © To resolve the neutral and charged current B anomalies, we consider a model where the standard model is extended by a pair of vector-like quark and lepton doublets, a new singlet scalar and a scalar leptoquark. (2) We investigate the phenomenology of vector-like dark matter in the leptoquark portal. We constrain the new parameter space by using the bounds on relic density and direct detection observables. (3) In the flavor sector, we use the bounds on $b \rightarrow \operatorname{sll}(\nu \bar{\nu}), b \rightarrow s \gamma$ to constrain the model parameters. (4) We have further constrain the new parameters from the τ decay modes: $\tau \rightarrow \mu \gamma, \tau \rightarrow \mu \mu \mu, \tau \rightarrow \mu \bar{\mu}_{\nu} \mu_{\tau}$ and the $(g-2)_{\mu}$ anomalies.

Model description

Table 1:Fields and their charges in the present model

	Field	$S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y}$	Z_{2}
Fermions	$Q_{L} \equiv(u, d)_{L}^{T}$	$(\mathbf{3}, \mathbf{2}, 1 / 6)$	+
	u_{R}	$(\mathbf{3}, 2 / 3)$	+
	d_{R}	$(\mathbf{3}, \mathbf{1},-1 / 3)$	+
	$\ell_{L} \equiv(\nu, e)_{L}^{T}$	$(\mathbf{1 , 2},-1 / 2)$	+
	e_{R}	$(\mathbf{1}, \mathbf{1},-1)$	+
Vector--like fermions	$\psi_{q} \equiv\left(\psi_{u}, \psi_{d}\right)^{T}$	$(3,2,1 / 6)$	-
	$\psi_{l} \equiv\left(\psi_{\nu}, \psi_{l}\right)^{T}$	$(1,2,-1 / 2)$	-
	χ	$(1,1,0)$	-
Scalars	H	$(\mathbf{1}, \mathbf{2}, 1 / 2)$	+
	S_{1}	$(3,1,1 / 3)$	-

The Lagrangian of the present model can be written as
$\mathcal{L}=\mathcal{L}_{\mathrm{SM}}-M_{q} \bar{\psi}_{q} \psi_{q}-M_{\psi} \bar{\psi}_{\ell} \psi_{\ell}-M_{\chi} \bar{\chi} \chi_{\ell}-\left(y_{D} \overline{\psi_{\ell}} \tilde{H} \chi_{\ell}+\right.$ H.c $)$
$-y_{q L}^{S_{S}} \overline{Q_{L}{ }^{C}} S_{1} \epsilon^{a b} \psi_{\ell L}-y_{\ell L}^{S_{1}} \overline{\psi_{q}{ }^{C}} S_{1} \epsilon^{a b} \ell_{L}-y_{\ell R}^{S_{1}} \overline{d_{R}{ }^{C}} S_{1} \chi_{\ell R}+$ h.c $+\overline{\psi_{\ell}} \gamma^{\mu}\left(i \partial_{\mu}-\frac{g}{2} \boldsymbol{\tau}^{a} \cdot \mathbf{W}_{\mu}^{a}+\frac{g^{\prime}}{2} B_{\mu}\right) \psi_{\ell}+\overline{\psi_{q}} \gamma^{\mu}\left(i \partial_{\mu}-\frac{g}{2} \boldsymbol{\tau}^{a} \cdot \mathbf{W}_{\mu}^{a}-\frac{g^{\prime}}{6} B_{\mu}\right) \psi_{q}$ $+\overline{\chi_{\ell}} \gamma^{\mu}\left(i \partial_{\mu}\right) \chi_{\ell}+\left.\left(i \partial_{\mu}-\frac{g^{\prime}}{3} B_{\mu}\right) S_{1}\right|^{2}-V\left(H, S_{1}\right)$,
where the scalar potential V is
$V\left(H, S_{1}\right)=\mu_{H}^{2} H^{\dagger} H+\lambda_{H}\left(H^{\dagger} H\right)^{2}+\mu_{S}^{2}\left(S_{1}^{\dagger} S_{1}\right)+\lambda_{S}\left(S_{1}^{\dagger} S_{1}\right)^{2}+\lambda_{H S}\left(H_{2}^{\dagger} H\right)\left(S_{1}^{\dagger}, S_{1}\right.$
The new neutral fermions mixing takes the form

$$
M_{N}=\left(\begin{array}{c}
M_{\psi_{\ell}} \tag{2}\\
\frac{y_{D}}{\sqrt{2}} \\
\sqrt{2}
\end{array} M_{\chi_{e}}\right) .
$$

One can diagonalize the above mass matrices by $U_{\alpha}^{T} M_{N} U_{\alpha}=\operatorname{diag}\left[M_{1}, M_{2}\right]$, with $\alpha=\frac{1}{2} \tan ^{-1}\left(\frac{2 y_{D v}}{\sqrt{2}\left(M_{\nu_{\ell}}-M_{x \ell}\right)}\right)$. The lightest mass eigenstate N_{2} is a probable dark matter in the present model.

Relic density

Based on the mass splitting between N_{1} and N_{2}, apart from annihilations several co-annihilation channels with leptons, quarks and gauge bosons in final state can contribute to relic density. The formula is given by

$$
\Omega h^{2}=\frac{2.14 \times 10^{9} \mathrm{GeV}^{-1}}{M_{\mathrm{pl}} g_{*}^{1 / 2}} \frac{1}{J\left(x_{f}\right)}, \quad J\left(x_{f}\right)=\int_{x_{f}}^{\infty} \frac{\langle\sigma v\rangle(x)}{x^{2}} d x
$$ Here $M_{\mathrm{Pl}}=1.22 \times 10^{19} \mathrm{GeV}, g_{*}=106.75$ and the freeze out paramter $x_{f}=M_{2} / T_{f} \simeq 20$. The thermally averaged annihilation cross section is given by

$\langle\sigma v\rangle(x)=\frac{x}{8 M_{2}^{5} K_{2}^{2}(x)} \int_{4 M_{2}^{2}}^{\infty} \hat{\sigma} \times\left(s-4 M_{2}^{2}\right) \sqrt{s} K_{1}\left(\frac{x \sqrt{s}}{M_{2}}\right) d s$
where K_{1}, K_{2} denote the modified Bessel functions.

Figure 1:Relic density as a function of DM mass with horizontal dashed lines represent Planck 3σ range.

Direct Detection

The DM can provide direct detection signals from the following effective interactions

$$
\begin{align*}
& \mathcal{L}_{Z}^{\text {eff }} \sim \frac{1}{M_{Z}^{2}}\left(\bar{q} \gamma^{\mu} q\right)\left(\overline{N_{2}} \gamma_{\mu} N_{2}\right), \\
& \mathcal{L}_{h}^{\text {eff }} \sim \frac{1}{M_{h}^{2}}(\bar{q} q)\left(\overline{N_{2}} N_{2}\right), \\
& \mathcal{L}_{S_{1}}^{\text {eff }} \tag{5}
\end{align*} \frac{1}{M_{S_{1}}^{2}}\left[\left(\bar{q} \gamma^{\mu} q\right)\left(\overline{N_{2}} \gamma_{\mu} N_{2}\right)+\left(\bar{q} \gamma^{\mu} \gamma^{5} q\right)\left(\overline{N_{2}} \gamma_{\mu} \gamma_{5} N_{2}\right)\right] .
$$

- XENON1T restricts the singlet-doublet mixing in Z-portal
$\left(\sin \theta<10^{-3}\right)$ (spin-independent).
- XENON1T excludes couplings above 0.02 in SLQ portal (spin-independent).
- PICO-60 excludes couplings above 2 in SLQ portal (spin-dependent).

Figure 2:WIMP-nucleon cross section as a function of DM mass, included with current experimental upper limits.

Flavor sector

Using the full Run-I and Run-II data set, recently the LHCb Collaboration has updated the lepton non-universality R_{K} parameter in the $q^{2} \in[1,6] \mathrm{GeV}^{2}[1]$

$$
R_{K}^{\mathrm{LHCb} 21}=\frac{\mathrm{BR}\left(B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}\right)}{\mathrm{BR}\left(B^{+} \rightarrow K^{+} e^{+} e^{-}\right)}=0.846_{-0.039-0.012}^{+0.042+0.013}
$$

giving rise to the disagreement of 3.1σ from the SM prediction

$$
\begin{equation*}
R_{K}^{\mathrm{SM}}=1.0003 \pm 0.0001 . \tag{7}
\end{equation*}
$$

The recent measurements by the LHCb experiment on $R_{K^{*}}$ ratio in two bins of low and high- q^{2} regions [2]:

$$
R_{K^{*}}^{\mathrm{LHCb}}= \begin{cases}0.660_{-0.070}^{+0.10} \pm 0.03 & q^{2} \in[0.045,1.1] \mathrm{GeV}^{2} \tag{8}\\ 0.69_{-0.07}^{+0.11} \pm 0.05 & q^{2} \in[1.1,6.0] \mathrm{GeV}^{2}\end{cases}
$$

have respectively 2.1σ and 2.5σ deviations from their corresponding SM values:

$$
R_{K^{*}}^{\mathrm{SM}}= \begin{cases}0.92 \pm 0.02 & q^{2} \in[0.045,1.1] \mathrm{GeV}^{2} \tag{9}\\ 1.00 \pm 0.01 & q^{2} \in[1.1,6.0] \mathrm{GeV}^{2}\end{cases}
$$

The effective Hamiltonian describing the $b \rightarrow s l^{+} l^{-}$quark level transition is given by

$$
\begin{equation*}
\mathcal{H}_{\mathrm{eff}}=-\frac{4 G_{F}}{\sqrt{2}} \lambda_{t}\left[\sum_{i=1}^{6} C_{i}(\mu) \mathcal{O}_{i}+\sum_{i=7,9,10}\left(C_{i}(\mu) \mathcal{O}_{i}+C_{i}^{\prime}(\mu) \mathcal{O}_{i}^{\prime}\right)\right] \tag{10}
\end{equation*}
$$

where

$$
\begin{align*}
& O_{7}^{(\prime)}=\frac{e}{16 \pi^{2}}\left(\bar{s} \sigma_{\mu \nu}\left(m_{s} P_{L(R)}+m_{b} P_{R(L)}\right) b\right) F^{\mu \nu} \\
& O_{9}^{(\prime)}=\frac{\alpha_{\mathrm{em}}}{4 \pi}\left(\bar{s} \gamma^{\mu} P_{L(R)}\right)\left(\bar{l} \gamma_{\mu} l\right), \quad O_{10}^{\prime \prime}=\frac{\alpha_{\mathrm{em}}}{4 \pi}\left(\bar{s} \gamma^{\mu} P_{L(R)} b\right)\left(\bar{l} \gamma_{\mu} \gamma_{5} l\right) \tag{11}
\end{align*}
$$

New Wilson coefficients:

$$
\begin{equation*}
C_{9}^{\mathrm{NP}}=-C_{10}^{\mathrm{NP}}=-\frac{\sqrt{2} y_{s}^{S_{1}} y_{b}^{S_{1}}\left|y_{l}^{S_{1}}\right|^{2}}{512 \pi G_{F} \alpha_{\mathrm{em}} \lambda_{t} M_{S_{1}}^{2}}\left[F\left(x_{u}, x_{\psi_{v}}\right)+F\left(x_{u}, x_{\chi}\right)\right], \tag{12}
\end{equation*}
$$

with $x_{i}=M_{i}^{2} / M_{S_{1}}^{2}, \quad i=\psi_{\nu}, \psi_{l}, \chi, \zeta_{u}, \zeta_{d}$ and

$$
\begin{equation*}
F\left(x_{i}, x_{j}\right)=\frac{1}{\left(1-x_{i}\right)\left(1-x_{j}\right)}+\frac{x_{i}^{2} \log x_{i}}{\left(1-x_{i}\right)^{2}\left(x_{i}-x_{j}\right)}+\frac{x_{j}^{2} \log x_{j}}{\left(1-x_{j}\right)^{2}\left(x_{j}-x_{i}\right)} . \tag{13}
\end{equation*}
$$

The $b \rightarrow$ sll includes the following observables

- $R_{K^{(*)}}$ in observed bins
- $\operatorname{Br}\left(B_{s} \rightarrow l l\right.$
- $\operatorname{Br}(B \rightarrow K l l)$
- $\operatorname{Br}\left(B \rightarrow K^{*} l l\right)$
- $\operatorname{Br}\left(B_{s} \rightarrow \phi l l\right)$
- $P_{i}^{(\prime)}, i=1,2,3,4,5,6,8$
$b \rightarrow s \nu \bar{\nu}:$
The effective Hamiltonian of $b \rightarrow s \nu_{i} \bar{\nu}_{j}$ process is given by

$$
\begin{equation*}
\mathcal{H}_{\mathrm{eff}}^{\nu_{i} \nu_{j}}=-\frac{4 G_{F}}{\sqrt{2}} \lambda_{t}\left(C_{L}^{S \mathrm{M}} \delta^{i j}+C_{L}^{i j}\right) \mathcal{O}_{L}^{i j} \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{O}_{L}^{i j}=\frac{\alpha_{\mathrm{em}}}{4 \pi}\left[\bar{s} \gamma^{\mu} P_{L} b\right]\left[\bar{\nu}_{i} \gamma_{\mu}\left(1-\gamma^{5}\right) \nu_{j}\right], \tag{15}
\end{equation*}
$$

New Wilson Coefficients

$$
\begin{equation*}
C_{L}^{i j}=-\frac{\sqrt{2} y_{s}^{S_{1}} y_{b}^{S_{1}}\left|y_{l}^{S_{1}}\right|^{2}}{512 \pi G_{F} \alpha_{\mathrm{em}} \lambda_{t} M_{S_{1}}^{2}} F\left(x_{d}, x_{\psi_{\nu}}\right) \tag{16}
\end{equation*}
$$

The $b \rightarrow s \nu_{l} \bar{\nu}_{l}$ includes

- $\operatorname{Br}\left(B \rightarrow K \nu_{l} \bar{\nu}_{l}\right)$
- $\operatorname{Br}\left(B \rightarrow K^{*} \nu_{l} \bar{\nu}_{l}\right)$
$b \rightarrow s \gamma:$

New Wilson coefficients:

$$
\begin{equation*}
C_{7}^{\gamma \mathrm{NP}}=\frac{\sqrt{2}}{24 G_{F} V_{t b} V_{t s}^{*}} \frac{y_{b}^{S_{1}} y_{s}^{S_{1}}}{M_{S_{1}}^{2}}\left(\tilde{F}_{7}\left(y_{\psi_{l}}\right)+2 F_{7}\left(y_{\psi_{l}}\right)\right), \tag{17}
\end{equation*}
$$

with

$$
\begin{equation*}
F_{7}(x)=\frac{x^{3}-6 x^{2}+6 x \log x+3 x+2}{12(x-1)^{4}}, \quad \tilde{F}_{7}(x)=x^{-1} F_{7}\left(x^{-1}\right) \tag{18}
\end{equation*}
$$

$\tau \rightarrow \mu \gamma:$
The effective Hamiltonian for $\tau^{-} \rightarrow \mu^{-} \gamma$ process is given by

$$
\begin{equation*}
\mathcal{H}_{\mathrm{eff}}=e\left(C_{L} \bar{\mu}_{R} \sigma^{\mu \nu} F_{\mu \nu} \tau_{L}+C_{R} \bar{\mu}_{L} \sigma^{\mu \nu} F_{\mu \nu} \tau_{R}\right) \tag{19}
\end{equation*}
$$

New Coefficients:

$$
\begin{align*}
C_{L} & =\frac{N_{c}}{48 \pi^{2} M_{S_{1}}^{2}} y_{\tau}^{S_{1}} y_{\mu}^{S_{1} *}\left(2 f_{2}\left(y_{u}\right)-\bar{f}_{2}\left(y_{u}\right)\right), \\
C_{R} & =\frac{N_{c}}{48 \pi^{2} M_{S_{1}}^{2}} y_{\tau}^{S_{1}} y_{\mu}^{S_{\mu} *}\left(2 f_{1}\left(y_{u}\right)-\bar{f}_{1}\left(y_{u}\right)\right), \tag{20}
\end{align*}
$$

$(g-2)_{\mu}$
Recently, Fermilab's E989 experimenthas reported a discrepancy of 4.2σ $\Delta a_{\mu}^{\mathrm{FNAL}}=(25.1 \pm 5.9) \times 10^{-10}$.
(21)

The scalar LQ contribution to a_{μ} is

$$
\begin{equation*}
\Delta a_{\mu}=-\frac{m_{\mu}^{2}\left(y_{l}^{S_{1}}\right)^{2}}{16 \pi^{2} M_{S_{1}}^{2}}\left(2\left(f_{1}\left(x_{u}\right)+f_{2}\left(x_{u}\right)\right)-\left(\bar{f}_{1}\left(x_{u}\right)+\bar{f}_{2}\left(x_{u}\right)\right)\right) \tag{22}
\end{equation*}
$$

$\tau \rightarrow \mu \mu \mu:$

New Coefficients:

$$
C_{\tau \rightarrow 3 \mu}=\frac{\left(y_{\mu}^{S_{1}}\right)^{3} y_{\tau}^{S_{1}}}{2 M_{S_{1}}^{2}} F\left(x_{u}, x_{u}\right)
$$

(23)
$\tau \rightarrow \mu \nu_{\tau} \bar{\nu}_{\mu}$

New Coefficients:

$$
\begin{equation*}
C_{\tau \rightarrow 3 \mu}=\frac{y_{\tau}^{S_{1}} y_{\mu}^{S_{1}} y_{\mu}^{S_{1}} y_{\nu_{\tau}}^{S_{1}}}{2 M_{S_{1}}^{2}} F\left(x_{u}, x_{d}\right) \tag{24}
\end{equation*}
$$

Conclusion

- We have extended the standard model with additional vector-like fermion doublets and a scalar leptoquark, odd under under Z_{2} symmetry
- The lightest neutral fermion is the DM candidate
- We constrain the new parameters from both the quark sector:
$b \rightarrow \operatorname{sll}(\nu \bar{\nu}), b \rightarrow s \gamma$, the tau sector: $\tau \rightarrow \mu \gamma, \tau \rightarrow \mu \mu \mu$,
$\tau \rightarrow \mu \bar{\nu}_{\mu} \nu_{\tau}$ and by using the recent $(g-2)_{\mu}$ anomalies.

References

[1] LHCb, R. Aaij et al., "Test of lepton universality in beauty-quark decays,
arXiv:2103.11769
[2] $\mathbf{L H C b}$, R. Aaij et al., "Test of lepton universality with $B^{0} \rightarrow K^{* 0} \ell^{+} \ell^{-}$
2] LHCb, R. Aajj et al., Test of lepton universality with
decays," JHEP 08 (2017) 0.55 arXiv:1705. 05802 .

