Electroweak Restoration at the LHC and Beyond

Not scheduled
15m
Asynchronous Talk Electroweak Interactions Electroweak Interactions Session 2

Speaker

Samuel Lane (University of Kansas)

Description

The LHC is exploring electroweak (EW) physics at the scale EW symmetry is broken. As the LHC and new high energy colliders push our understanding of the Standard Model to ever-higher energies, it will be possible to probe not only the breaking of but also the restoration of EW symmetry. We propose to observe EW restoration in double EW boson production via the convergence of the Goldstone boson equivalence theorem. We measure this convergence through the ratio of differential cross sections for VH production. We present a method to extract this ratio from collider data. With a full signal and background analysis, we demonstrate that the 14 TeV HL-LHC can confirm that this ratio converges to one to 40% precision while at the 27 TeV HE-LHC the precision will be 6%. We also investigate statistical tests to quantify the convergence at high energies. Our analysis provides a roadmap for how to stress test the Goldstone boson equivalence theorem and our understanding of spontaneously broken symmetries, in addition to confirming the restoration of EW symmetry.

Primary authors

Li Huang Samuel Lane (University of Kansas) Ian Lewis (University of Kansas) Zhen Liu (University of Maryland)

Presentation materials