

Laboratoire d'Annecy de Physique des Particules

09/06/2021

Higgs boson couplings to bosons with the ATLAS experiment

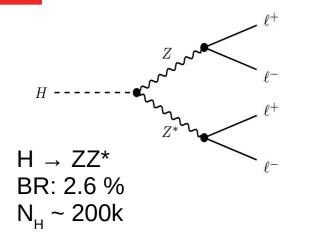
Luca Franco (on behalf of the ATLAS collaboration)

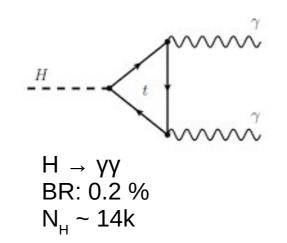
Higgs couplings

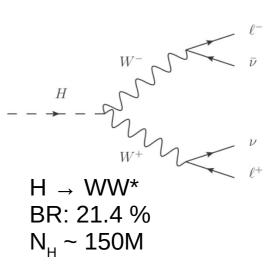
talk)

Higgs

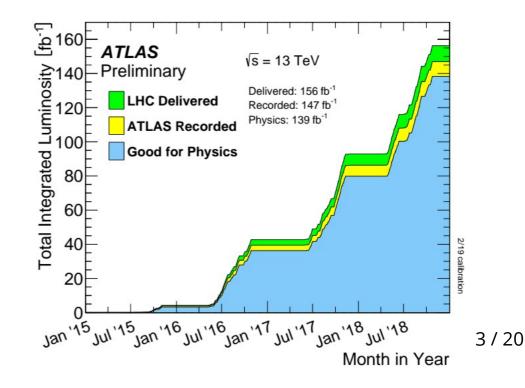
bosons

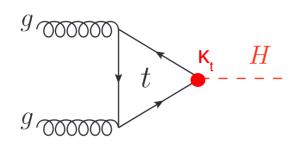

this talk)


• The Standard Model (SM) lagrangian:

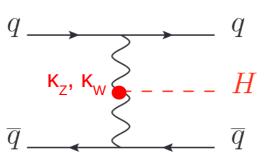

Z=-4 Fre Friv titte +h.c. Higgs couplings to fermions (see Tristan's Yi Yii Yif **Higgs self**coupling (partially covered) couplings to (covered by

N_H : Nr of expected Higgs bosons @139fb⁻¹

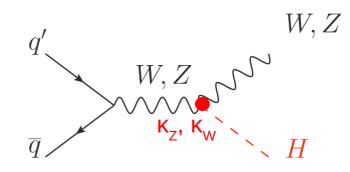

Higgs bosonic decays



- Crucial channels for Higgs discovery in Run 1;
- Allow accurate measurements of the Higgs properties in various regions of the phase space during Run 2;
- Profit from the full Run 2 dataset → 139fb⁻¹ of pp collisions at √s=13 TeV.



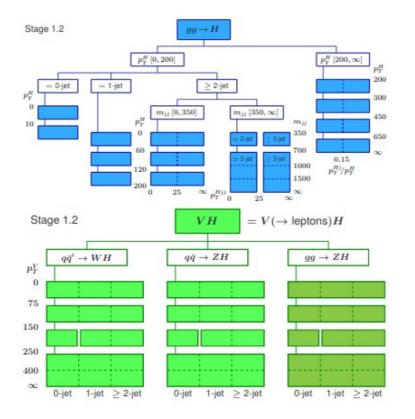
Higgs production modes

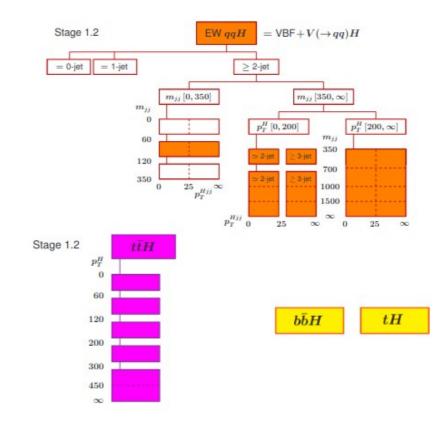

• % of total production cross section (XS) at mH=125.09 GeV and \sqrt{s} =13 TeV in pp collisions:

Gluon fusion (ggF) 87%

Vector boson fusion (VBF) 6.8%

Associated vector boson (VH) 4%

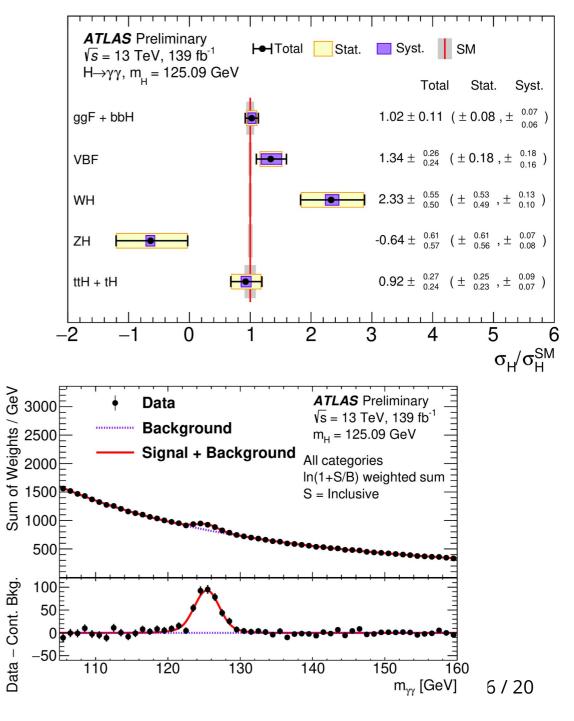

Associated single top (tH) <0.1%


 Coupling strengths can be probed through the production rate of different mechanisms.

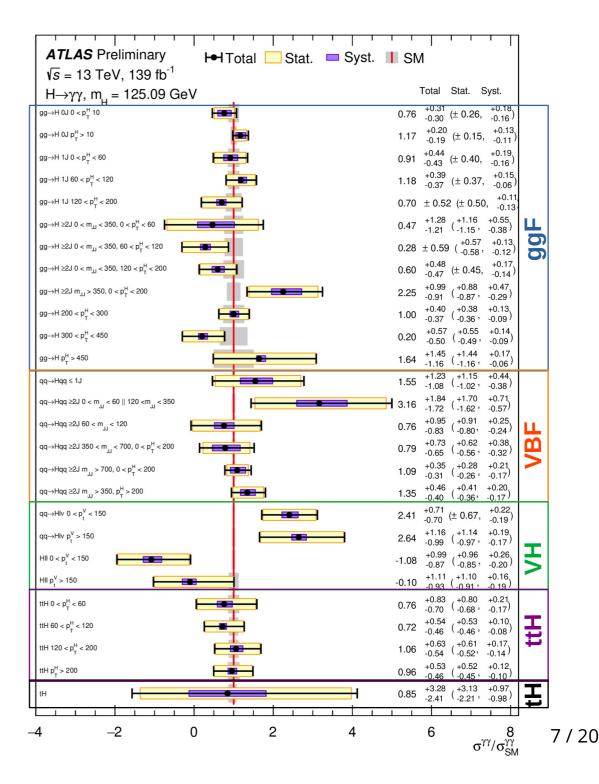
Associated top quark pair (ttH) 0.9%

Simplified Template Cross Sections

- Measurements performed in the bins proposed by the STXS stage 1.2 framework:
 - Minimize theoretical uncertainties;
 - Maximize experimental sensitivities;
- Separately measure regions of phase space potentially sensitive to BSM effects;
- Ease combination with other decay channels.

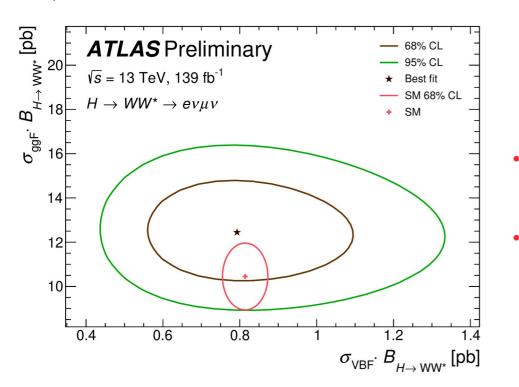


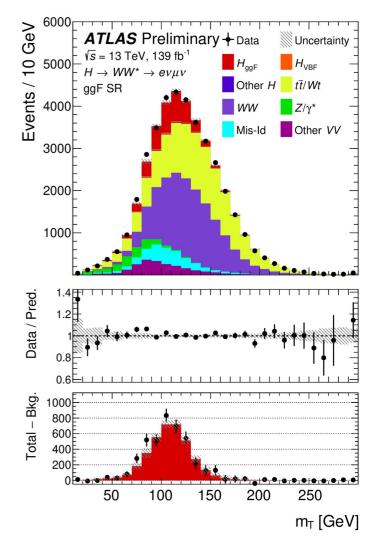
H→yy: prod. mode XS


- Measurements of total XS, production modes and STXS (27 regions);
- Multiclass Boosted Decision Tree (BDT) to categorize events following STXS definition minimizing misidentification rates;
- Binary BDT to separate signal from background in each category;
- Fit the Higgs narrow peak over the SM falling background in m_{yy} using analytic functions;
- Systematic uncertainties similar to statistical ones in ggF (background modeling) and VBF (parton shower modeling).

$$(\sigma \times B_{\gamma\gamma})_{\text{obs}} = 127 \pm 10 \,\text{fb}$$

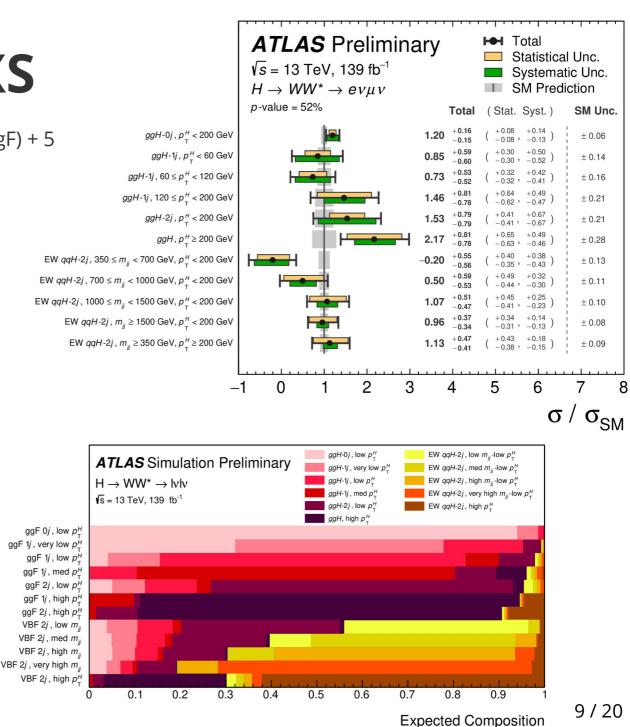
 $(\sigma \times B_{\gamma\gamma})_{\text{exp}} = 116 \pm 5 \,\text{fb}$


H→yy: STXS


- Not enough statistical power to measure all stage 1.2 bins → merging down to 27 (merging scheme in back-up);
- Analysis optimized to minimize uncertainties and correlations among STXS bins;
- ~30% correlation between some VH bins (mainly due to misreconstructed leptons);
- First channel performing ttH measurements in pT_H bins;
- Upper limit of 8*SM prediction @ 95% CL set on tH production.

H→WW: ATLAS-CONF-2021-014 prod. mode XS

- Measurements of ggF and VBF production XS and 11 STXS regions;
- Categories defined according to N_{jet} and kinematic selection targeting VBF topology;
- Multiple background sources modeled with dedicated data control regions (CRs) and Monte Carlo (MC) predictions;

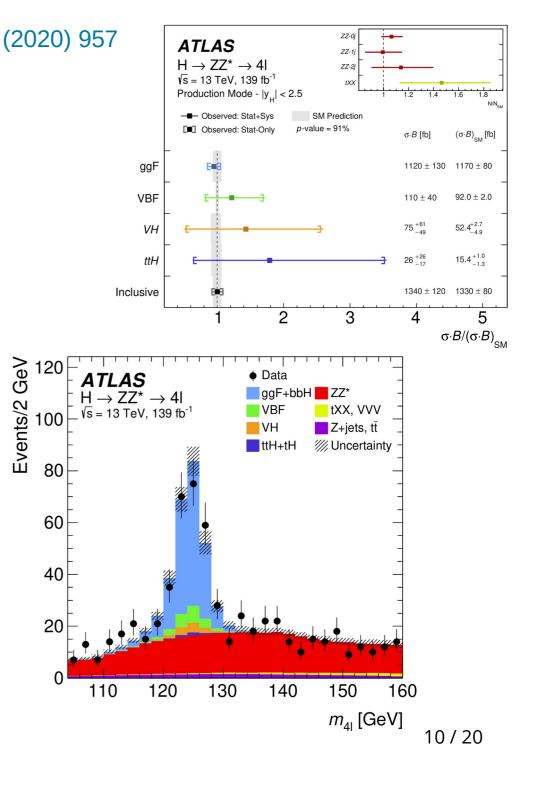


- Transverse mass of the dilepton system m_{τ} used as observable in the fit for ggF categories;
 - In the VBF category, Neural network (NN) used to separate VBF from ggF and its output used as observable.

$$m_{\rm T} = \sqrt{\left(E_{\rm T}^{\ell\ell} + E_{\rm T}^{\rm miss}\right)^2 - \left|\boldsymbol{p}_{\rm T}^{\ell\ell} + \boldsymbol{E}_{\rm T}^{\rm miss}\right|^2} \quad 8/20$$

H→WW: STXS

- STXS measurements in 11 bins: 6 (ggF) + 5 (EW qqHqq);
- Categorization based on the prod. mode measurement with additional kinematic cuts;
- Dominant systematics: flavour tagging, missing E_T (ggF bins); jet energy scale/resolution, matrix element calculation and parton shower (ggF, VBF bins);
- Normalizations of WW and top backgrounds contribute largely to the overall uncertainty;
- The results are compatible with the SM predictions with a p-value of 52%.


ATLAS-CONF-2021-014

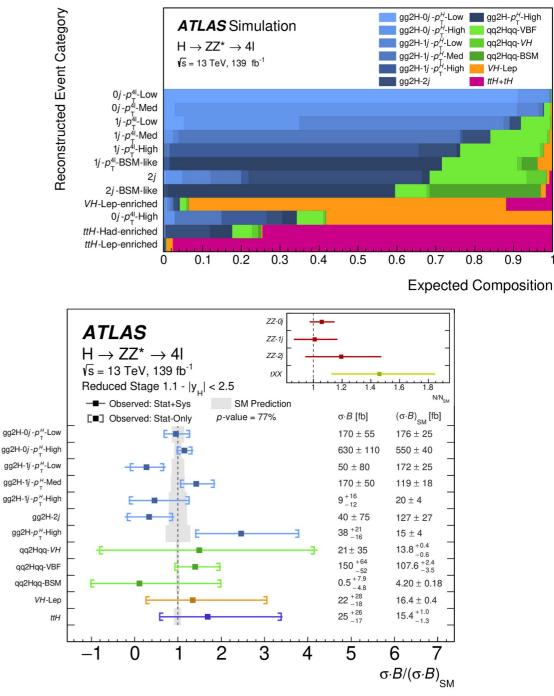
Reconstructed Signal Region

$H \rightarrow ZZ:$ Eur. Phys. J. C 80 (2020) 957 prod. mode XS

- Measurements of total XS, production modes and reduced STXS 1.1 regions (12);
- Use of data sidebands to constrain the dominant ZZ non-resonant background;
- NNs used to separate different signals (e.g. ggF, VBF) and backgrounds (e.g. ZZ non-resonant) depending on the category in order to minimize the correlations among the measured XS;
- For each NN, n-1 output nodes are used as observables in the fit;
- Particle-isolation and -identification criteria optimized to retain sensitivity in the ggF regions, while increasing the efficiency for the VH and ttH categories.

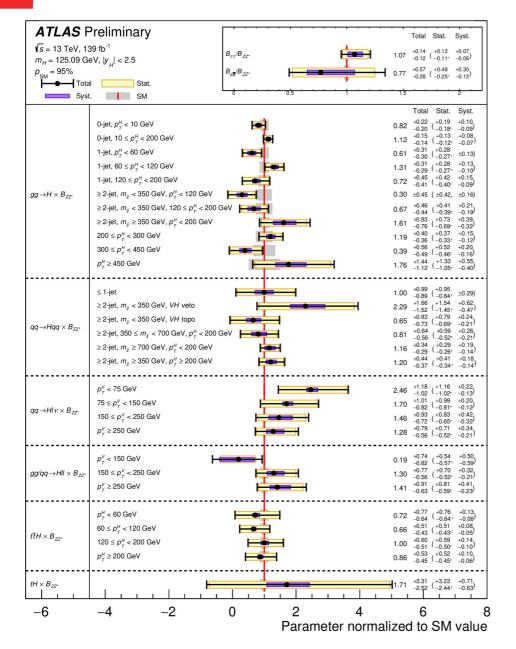
$$(\sigma \times B_{H \to ZZ})_{obs} = 1.34 \pm 0.12 \text{ pb}$$

 $(\sigma \times B_{H \to ZZ})_{SM} = 1.33 \pm 0.08 \text{ pb}$



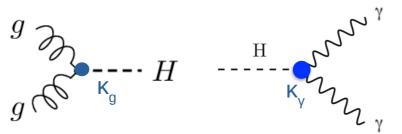
H→ZZ: STXS

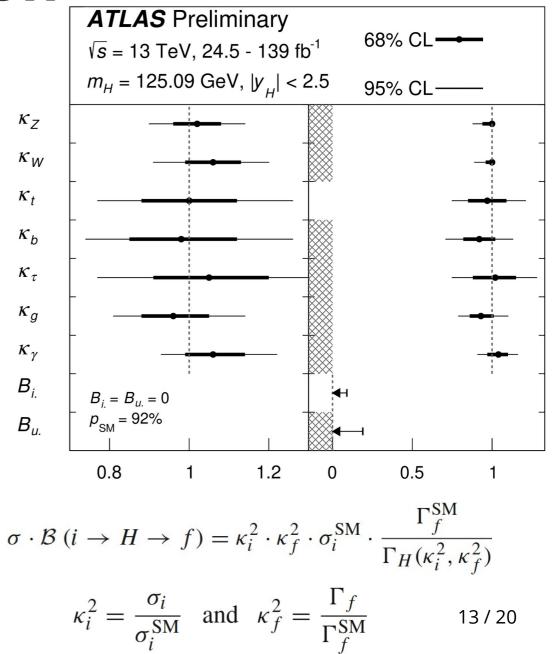
- 12 Reduced Stage 1.1 bins: 6 (ggF)
 + 3 (EW qqH) + VH-lep + ttH;
- P-value of the compatibility test with SM is 77%;
- Additional separate measurement of an alternative qq2Hqq-VBF bin (defined by m_{jj} >350 GeV and pT_H
 < 200 GeV):

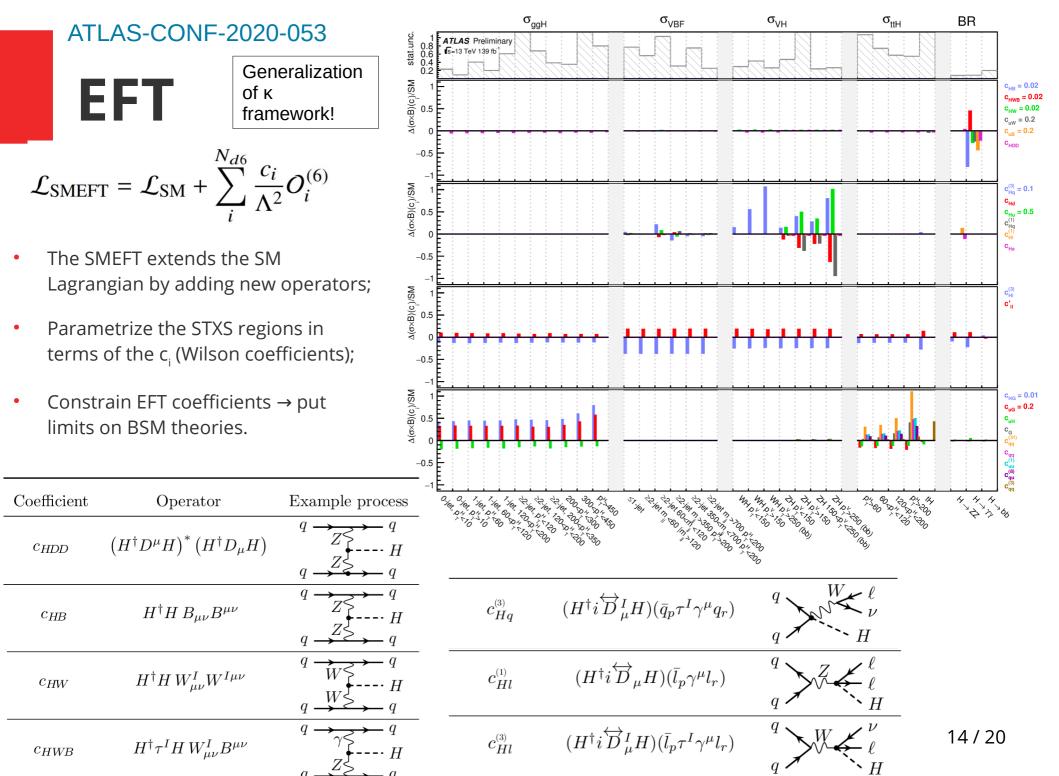

$$0.060^{+0.025}_{-0.020} \text{ pb}$$
 obs $0.0335^{+0.0007}_{-0.0011} \text{ pb}$ SM

20% correlation with gg2H-2j bin (due to ggF contamination in the VBF selections).

Eur. Phys. J. C 80 (2020) 957


Combination: STXS

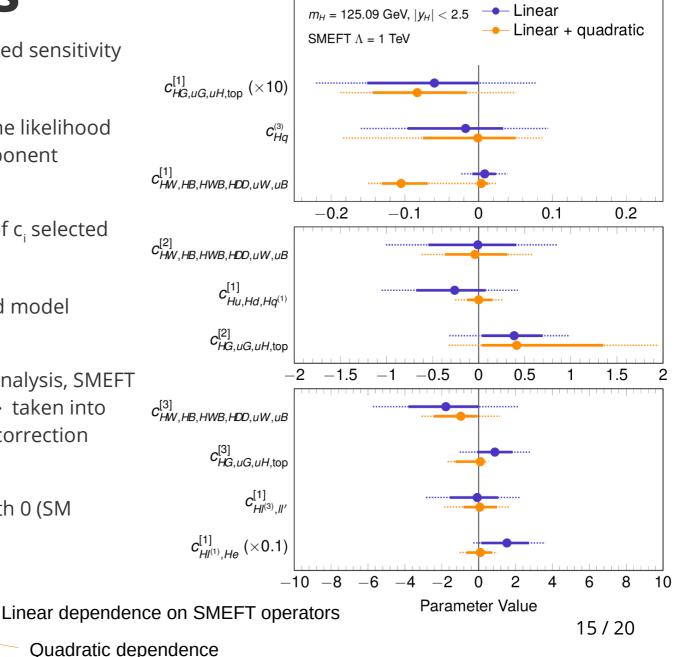



- Preliminary combined measurement of STXS Stage 1.2;
- Combination of $H \rightarrow \gamma \gamma$, $H \rightarrow bb$ (VH only), $H \rightarrow ZZ^* \rightarrow 4l$ analyses;
 - $H \rightarrow WW$ not included yet!
- Relative uncertainties ranging from 10% to 100% (most limited by statistics);
- Compatibility level with SM: 95%;
- They are used as input for the EFT and κ interpretation;
- Reparametrization in terms of BR_{ZZ} $(\sigma \times B)_{if} = (\sigma \times B)_{i,ZZ} \cdot \left(\frac{B_f}{B_{ZZ}}\right)_{12/20}$

кinterpretation

- Measurements of coupling-strength modifiers κ;
- Combination of H→γγ, ZZ, WW, ττ, bb, μμ, invisible;
- Using effective photon and gluon couplings κ_{y} and κ_{g} ;
- Testing with and without BSM contributions in decays (B_i invisible rate, B_i undetected rate);
- Negative value for κ_t is excluded at 2.9σ;
- The SM corresponds to B_i = B_u = 0 and all κ set to unity.

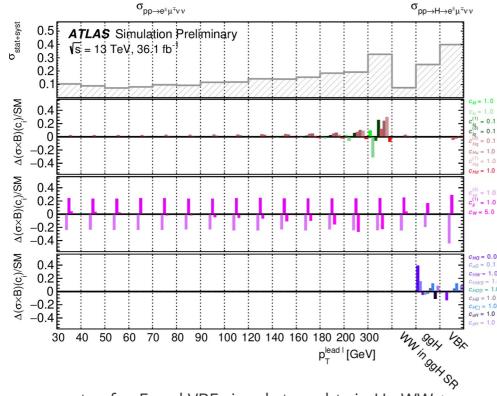
— 68 % CL


----- 95 % CL

EFT results

- Cannot constrain all c_i due to limited sensitivity to certain processes;
- "Flat" directions (0 sensitivity) of the likelihood are identified via a Principal Component Analysis (PCA) and set to 0;
- Simultaneously fit combinations of c_i selected according to expected sensitivity;
- Using SMEFT linearized model and model including quadratic terms;
- Due to the selection of the H→4l analysis, SMEFT operators affect the acceptance → taken into account with the application of a correction function;
- All measured c_i are compatible with 0 (SM prediction).

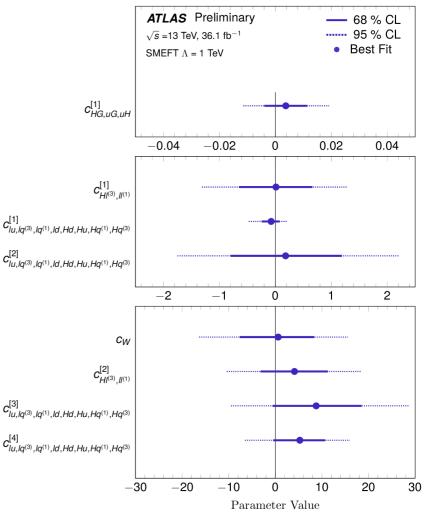
 $|M_{SM} + c_i M_{SMEFT,i}|^2$


 $\sigma_{\text{STXS}} = \sigma_{\text{SM}} + (\sigma_{\text{int}}) + (\sigma_{\text{BSM}})$

ATLAS Preliminary

 \sqrt{s} =13 TeV, 139 fb⁻¹

H→WW + WW (SM): EFT



- Measurements of ggF and VBF signal strenghts in H→WW + differential XS of WW production in the 0-jet channel;
- Parametrization of the WW background in terms of EFT operators;
- Consider impact of 20 EFT operators → PCA reduction → simultaneous fit on 8 combinations;
- O_{HW} and O_{HI}⁽³⁾ operators influence the Higgs decay kinematics leading to acceptance effects in ggF region → taken into account with a correction factor;

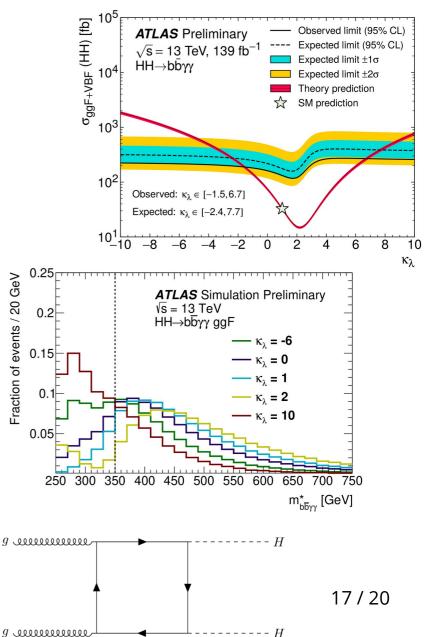
• First step towards a global EFT fit!

ATL-PHYS-PUB-2021-010

L=36.1fb⁻¹

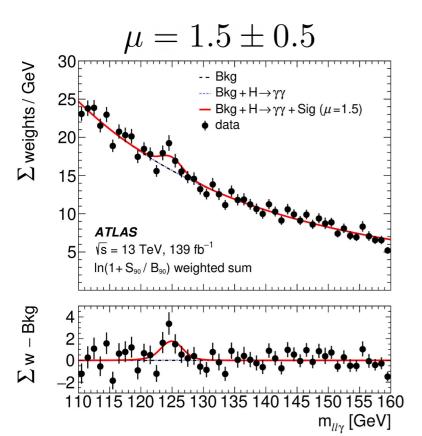
Including other areas (e.g. SM electroweak, top quark) in the combination → constrain more EFT parameters.

Higgs self-coupling in HH→yybb

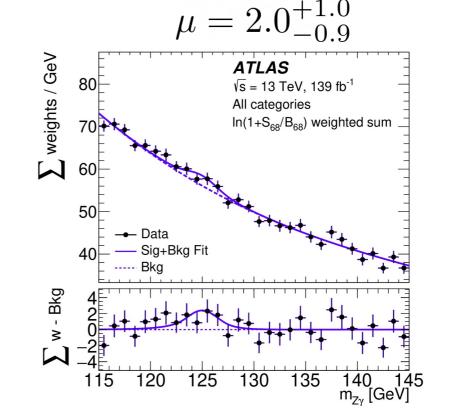

H

- Constrain Higgs boson trilinear coupling modifier κ_{λ} using non-resonant di-Higgs (HH) production;
- Divide events in $m_{\gamma\gamma bb}$ < 350 GeV and $m_{\gamma\gamma bb}$ > 350 GeV to improve sensitivity to κ_{λ} variations;
- Use BDTs to reject backgrounds (non-resonant γγ, single H);
- Fit m_{yy} using analytic models for signal and background;
- Upper limit of 4.1*SM prediction @ 95% CL set on HH production;

g QQQQQQQQQQQQ


• Limit on κ_λ is [-1.5, 6.7] @ 95% CL ;

 $\kappa_{\lambda} = \lambda_{HHH} / \lambda_{HHH}^{SM}$


Rare decays: $H \rightarrow \gamma^*(\rightarrow II)\gamma$ and $H \rightarrow Z(\rightarrow II)\gamma$

- First evidence for the decay of the Higgs boson into a pair of leptons (ee or $\mu\mu$) and a photon: 3.2 σ (H $\rightarrow\gamma^*\gamma$);
- Experimental challenge: low $m_{\parallel} \rightarrow$ leptons are collimated;

arXiv:2103.10322 Phys. Lett. B 809 (2020) 135754

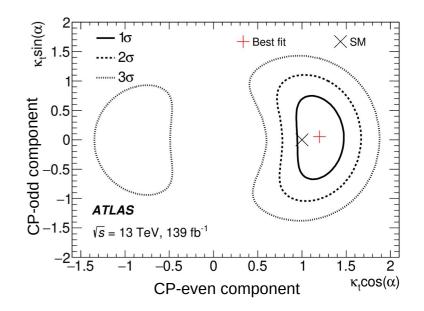
- Upper limit @95%CL set on pp→H→Zγ
 XS times BR: 3.6*SM prediction;
- Corresponding to a 2.2σ significance;

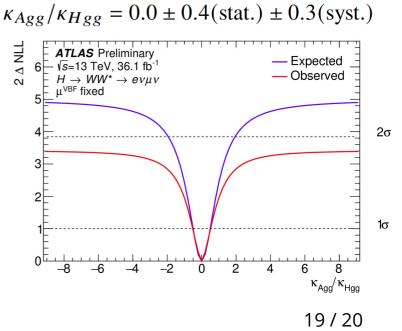
18/20

Higgs CP properties

$$\mathcal{L} = -\frac{m_t}{v} \{ \bar{\psi}_t \kappa_t [\cos(\alpha) + i \sin(\alpha) \gamma_5] \psi_t \} H$$

Top Yukawa coupling CP-mixing angle


- Higgs CP tested with ttH/tH productions and $H \rightarrow \gamma \gamma$ decays;
- Pure CP-odd excluded at 3.9σ and |α|>43° excluded at 95% CL.


$$\mathcal{L}_{0}^{\text{loop}} = -\frac{1}{4} \left(\kappa_{Hgg} g_{Hgg} G^{a}_{\mu\nu} G^{a,\mu\nu} + \kappa_{Agg} g_{Hgg} G^{a}_{\mu\nu} \tilde{G}^{a,\mu\nu} \right) H$$

CM

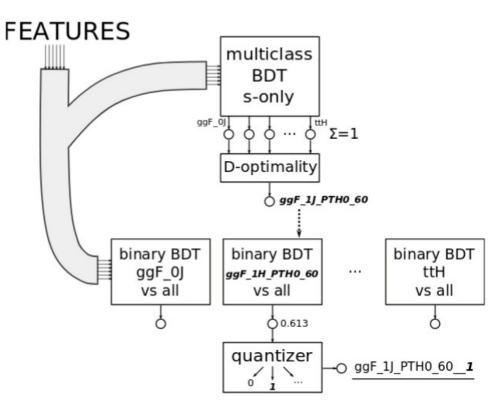
- CP structure of (effective) coupling to gluons tested with H→WW events in the ggF+2jets channel;
- Polarisation of the HVV couplings tested in the VBF channel (results consistent with the SM).

Phys. Rev. Lett. 125 (2020) 061802

Conclusions

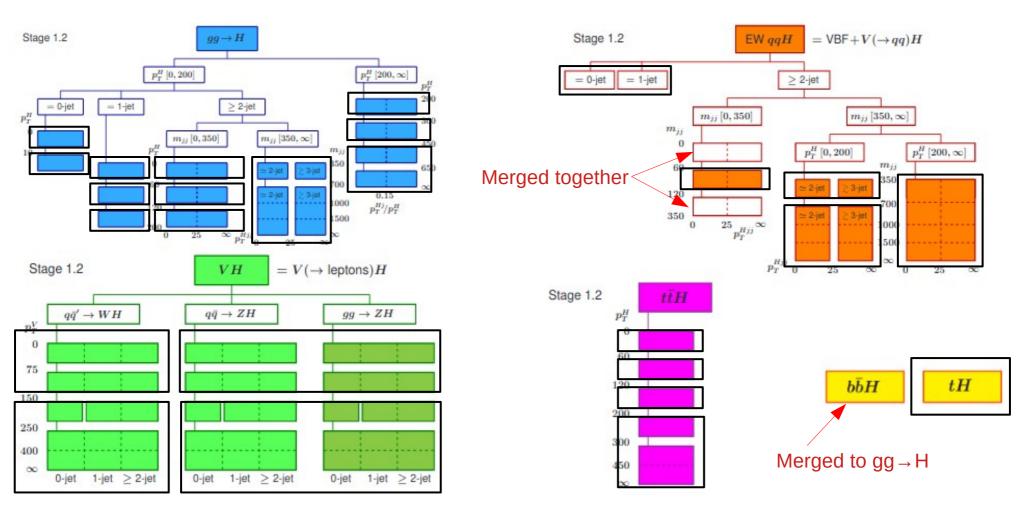
- Many interesting results produced by ATLAS using Run 2 data;
- Higgs properties studied using key (in particular bosonic) decay channels;
- All measurements are in good agreement with the SM;
- Interpretation through the most advanced frameworks → no hint of new physics observed;
- Outlook:
 - Expect more results with full Run 2 data;
 - Combination ATLAS+CMS;
 - Improvements of analysis methods;
 - Expect improvement from the larger datasets of Run 3 (x2) and especially HL-LHC (x20).

H→ZZ: neural network

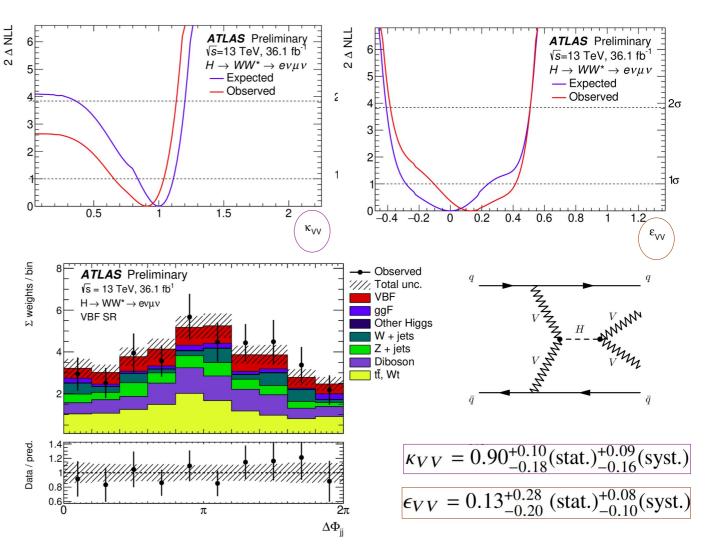

- Neural Neworks (NNs) consists of two recurrent networks (one related to the 4 leptons and one related to jets) in combination with a multilayer perceptron (containing info related to full event);
- Input variables per category:

Category	Processes	MLP	Lepton RNN	Jet RNN	Discriminant
$0j - p_T^{4\ell}$ -Low $0j - p_T^{4\ell}$ -Med	ggF, ZZ*	$p_{\rm T}^{4\ell}, D_{ZZ^*}, m_{12}, m_{34},$ $ \cos \theta^* , \cos \theta_1, \phi_{ZZ}$	$p_{\mathrm{T}}^{\ell},\eta_{\ell}$	-	NN _{ggF}
$1j$ - $p_{\rm T}^{4\ell}$ -Low	ggF, VBF, ZZ*	$p_{\mathrm{T}}^{4\ell}, p_{\mathrm{T}}^{j}, \eta_{j}, \ \Delta R_{4\ell j}, D_{ZZ^{*}}$	$p_{\mathrm{T}}^{\ell},\eta_{\ell}$	-	NN_{VBF} for $NN_{ZZ} < 0.25$ NN_{ZZ} for $NN_{ZZ} > 0.25$
$1j - p_{\mathrm{T}}^{4\ell}$ -Med	ggF, VBF, ZZ*	$p_{ ext{T}}^{4\ell}, p_{ ext{T}}^{j}, \eta_{j}, E_{ ext{T}}^{ ext{miss}}, onumber \ \Delta R_{4\ell j}, D_{ZZ^{*}}, \eta_{4\ell}$	$p_{\mathrm{T}}^{\ell},\eta_{\ell}$	-	NN_{VBF} for $NN_{ZZ} < 0.25$ NN_{ZZ} for $NN_{ZZ} > 0.25$
$1j$ - $p_{\mathrm{T}}^{4\ell}$ -High	ggF, VBF	$p_{\mathrm{T}}^{4\ell}, p_{\mathrm{T}}^{j}, \eta_{j}, \ E_{\mathrm{T}}^{\mathrm{miss}}, \Delta R_{4\ell j}, \eta_{4\ell}$	$p_{\mathrm{T}}^{\ell},\eta_{\ell}$	-	NN _{VBF}
2j	ggF, VBF, VH	$m_{jj}, p_{\mathrm{T}}^{4\ell j j}$	$p_{\mathrm{T}}^{\ell},\eta_{\ell}$	$p_{\mathrm{T}}^{j},\eta_{j}$	NN_{VBF} for $NN_{VH} < 0.2$ NN_{VH} for $NN_{VH} > 0.2$
2 <i>j</i> -BSM-like	ggF, VBF	$\eta_{ZZ}^{ ext{Zepp}}, p_{ ext{T}}^{4\ell j j}$	$p_{\mathrm{T}}^{\ell},\eta_{\ell}$	$p_{\mathrm{T}}^{j},\eta_{j}$	NN _{VBF}
VH-Lep-enriched	VH, ttH	$N_{ m jets},N_{b ext{-jets},70\%},\ E_{ m T}^{ m miss},H_{ m T}$	p_{T}^ℓ	-	NN _{ttH}
ttH-Had-enriched	ggF, ttH, tXX	$p_{\mathrm{T}}^{4\ell}, m_{jj},$ $\Delta R_{4\ell j}, N_{b ext{-jets,70\%}},$	$p_{\mathrm{T}}^{\ell},\eta_{\ell}$	$p_{\mathrm{T}}^{j},\eta_{j}$	NN_{ttH} for $NN_{tXX} < 0.4$ NN_{tXX} for $NN_{tXX} > 0.4$

22 / 20


H→yy: categorization

- IDEA: Targets the full STXS granularity simultaneously. Optimized for the determinant of the covariance matrix of the results, it takes into accounts both errors and correlations of the fit.
- PROCEDURE:
 - Train a multiclass BDT over 44 STXS truth bins (signal only) with high level and topreco variables;
 - D-optimality: weight the multiclass outputs and classify events in 44 reco classes;
 - In each reco class, train a binary BDT (signal vs backgrounds) with high level and top-reco variables;
 - Build 88 categories with significance scans over BDT outputs


H→yy: STXS merging

• Not enough statistical power to fit all $44 \rightarrow$ merge down to 27 bins.

Polarisation-dependent couplings in VBFH(→WW)

- In the SM, HVV couplings are insensitive to polarisations $(\kappa_{vv}=1, \epsilon_{vv}=0);$
- Exploiting both production and decay and assuming CP-even Higgs;
- Using rate and shape information from the Δφ_{ii} distribution.

 $\mathcal{L} = \kappa_{VV} \left(\frac{2m_W^2}{v} H W_{\mu}^+ W^{-\mu} + \frac{m_Z^2}{v} H Z_{\mu} Z^{\mu} \right) - \frac{\varepsilon_{VV}}{2v} \left(2H W_{\mu\nu}^+ W^{-\mu\nu} + H Z_{\mu\nu} Z^{\mu\nu} + H A_{\mu\nu} A^{\mu\nu} \right)$ 25 / 20

Combination: prod. mode and BR

AILAS Preliminary $\sqrt{s} = 13 \text{ TeV}, 24.5 - 139 \text{ fb}^{-1}$ $m_H = 125.09 \text{ GeV}, y_u < 2.5$	olali	— (,	I SM
$p_{SM}^{H} = 87\%$		Total	Stat.	Syst.
ggF γγ 📥	1.03	± 0.11 ($\pm \; 0.08$,	+0.08 -0.07)
ggF ZZ	0.94	+0.11 -0.10 ($\pm \ 0.10$,	± 0.04)
ggF <i>WW</i> 📥	1.08	+0.19 -0.18 (±0.11,	± 0.15)
ggF ττ ι	1.02	+ 0.60 - 0.55 (+0.39 -0.38,	+0.47 -0.39)
ggF comb.	1.00	± 0.07 (±0.05,	± 0.05)
VBF γγ ι μι	1.31	+ 0.26 - 0.23 (+0.19 -0.18,	+0.18 -0.15)
VBF ZZ	1.25	+0.50 -0.41 (+0.48 -0.40,	+0.12 -0.08)
VBF WW	0.60	+0.36 -0.34 (+0.29 -0.27,	± 0.21)
VBF ττ μ	1.15	+ 0.57 - 0.53 (+0.42 -0.40,	$^{+0.40}_{-0.35}$)
VBF bb	- 3.03	+ 1.67 - 1.62 (+1.63 -1.60,	+0.38 -0.24)
VBF comb.	1.15	+0.18 -0.17 (±0.13,	+0.12 -0.10)
VH γγ 🖂	1.32	+ 0.33 - 0.30 (+0.31 -0.29,	+0.11 -0.09)
VH ZZ	1.53	+ 1.13 - 0.92 (+ 1.10 - 0.90 ,	+0.28 -0.21)
VH bb 📥	1.02	+0.18 -0.17 (±0.11,	+0.14 -0.12)
VH comb.	1.10	+0.16 -0.15 (±0.11,	+0.12 -0.10)
ttH+tH γγ 📫	0.90	+0.27 -0.24 (+0.25 -0.23,	+0.09 -0.06)
ttH+tH VV	1.72	+ 0.56 - 0.53 (+0.42 ,	+0.38 -0.34)
<i>ttH+tH</i> ττ μ<u>μ</u>μμμμμμμμμμμμμμμμμμμμμμμμμμμμμμμμμμ	1.20	+ 1.07 - 0.93 (+0.81 -0.74,	+0.70 -0.57)
ttH+tH bb	0.79	+ 0.60 - 0.59 ($\pm \; 0.29$,	$^{+0.52}_{-0.51}$)
<i>ttH+tH</i> comb.	1.10	+0.21 -0.20 (+0.16 -0.15,	+0.14 -0.13)
2 0 2 4		6		8

- Measurements of cross section times branching ratio per decay channel and per production mode (also combined) normalized to their SM prediction;
- The cross sections of the ggF(H→ bb), VH(H → WW*) and VH(H→ττ) processes are fixed to their SM predictions;
- Compatibility level with SM: 87%;

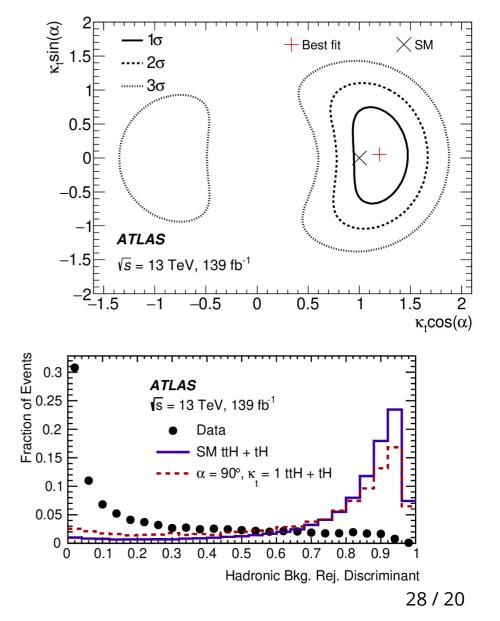
EFT: choice of measured parameters

- It's not possible to fit/constrain all the $c_i \rightarrow must$ find the optimal set through a Principal Component Analysis;
- C_{STXS} is the SM expected covariance matrix of the measurement; P is the linearised parametrisation matrix;
- C⁻¹_{EFT} represents (Gaussian approx.) the Fisher information matrix of its SMEFT re-parametrisation;
- Eigenvalue decomposition of $C_{EFT}^{-1} \rightarrow eigenvectors$ corresponding to the most sensitive directions.

ATIAS Preliminary $\sqrt{s} = 13$ TeV. 139 fb⁻¹

#

1


	200210		0.70	0.22	0.39	0.04	0.02									0.55	0.02															-0.02	
	299310		-0.70	-0.23	0.39	-0.04	-0.02									0.55	0.02															-0.02	
2	121830		-0.47	-0.15	0.26	-0.03										-0.83	-0.03	\frown		1				Γ)⊤	_	~ 1 -	_ [1		Т)	
3	1960	0.99		0.10	0.03				-0.03	0.09	-0.05			-0.02	0.02		(\mathbf{E}^{1}	Fr	Г	=	=	Γ		C	2	Т	٦Y	\mathbf{S}	Γ		
4	38	-0.11	0.09		0.15			0.02	-0.26	0.84	-0.41	-0.02	-0.02	-0.06	0.04		0.08				1					0.02	~		· .	0.03			
5	19		0.10	-0.19	0.06					0.03	-0.02	-0.07	0.09	-0.13	0.10	0.02	-0.69	0.17	0.03	0.03	0.22	0.05	0.52		0.15	-0.08	0.03	0.02	0.23	0.07	0.06		
6	10	0.08		-0.57	-0.34			-0.02	-0.02	0.08	-0.10	0.13	-0.13	0.54	-0.40		-0.04				0.02		0.04			-0.02			0.02	-0.20	-0.08		
7	5.9	-0.07	-0.23	0.73		-0.03	-0.02	-0.03	-0.02	0.08		0.10	-0.15	0.44	-0.25		-0.13	0.08			0.09	0.02	0.22		0.06				0.10	-0.07	-0.11		
8	1.1	-0.01	-0.02	0.08				-0.02	-0.02	0.04	-0.02	-0.01	0.02	0.08	-0.03	0.03	-0.68	-0.29	-0.03	-0.04	-0.24	-0.04	-0.52	-0.01	-0.15	-0.10	-0.03	-0.02	-0.25	0.04			
9	0.3	-0.02	-0.41	0.09	-0.70	-0.02	-0.01	-0.12	0.01	-0.03	-0.36	0.16		-0.37	0.10		-0.05	0.03								0.06				0.06	-0.11	-0.01	
10	0.16		0.09	-0.09	0.09	-0.04	-0.01	-0.04		0.10	0.31	0.29	-0.58	-0.26	-0.12		-0.07	0.02				-0.04				0.08				0.27	-0.52	-0.02	0.01
11	0.036		0.03	0.03	0.07	-0.01	0.04	0.19	-0.04		0.03	0.09	-0.06	-0.18	-0.07	0.01	-0.16	0.22	-0.01	0.01	-0.01	-0.10	-0.09		-0.02	0.70	-0.01		-0.02	-0.56	0.09		-0.02
12	0.023		-0.01				0.37	-0.01		-0.01	-0.03	-0.02	0.03	0.05	0.03		0.01	-0.05			0.03	-0.91	0.08		0.02	-0.02			0.03	0.09			

Phys. Rev. Lett. 125 (2020) 061802

CP structure of tH/ttH(→yy)

$$\mathcal{L} = -\frac{m_t}{v} \{ \bar{\psi}_t \kappa_t [\cos(\alpha) + i \sin(\alpha) \gamma_5] \psi_t \} H$$

Top Yukawa coupling CP-mixing angle


- The SM predicts a CP-even (α=0) Higgs boson;
- ttH and tH productions are sensitive to deviations from SM couplings;
- Background rejection and CPodd(even) separation using two BDTs;
- κ_{γ} and κ_{g} constrained by the results obtained in the combination;
- Pure CP-odd excluded at 3.9σ and |α|>43° excluded at 95% CL.

Eur. Phys. J. C 80 (2020) 957

EFT: H→4l acceptance effect

- H→ZZ→4l analysis has reconstruction level selection on m₁₂ and m₃₄ to target the signal;
- Large impact on EFT signal acceptance and on c_i limit;
- 3D (c_{HW}, c_{HB}, c_{HWB})
 Lorentz function used to model a correction factor;

