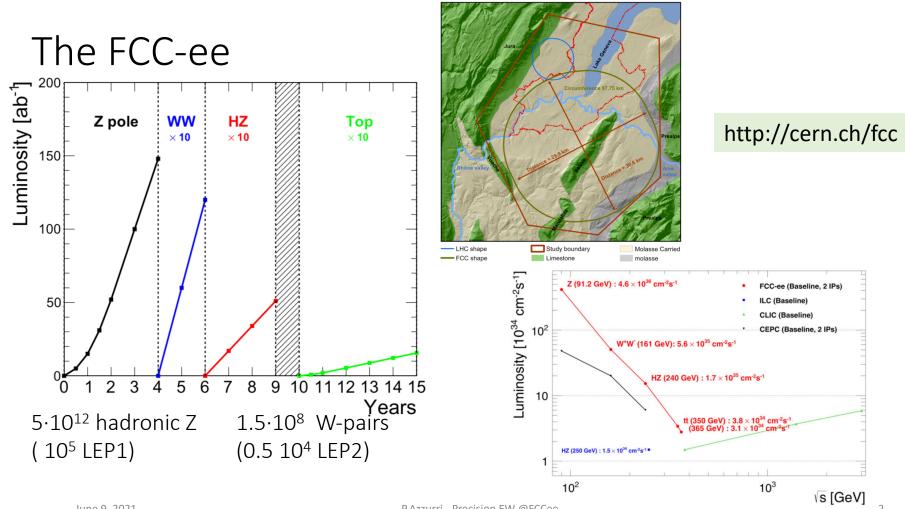
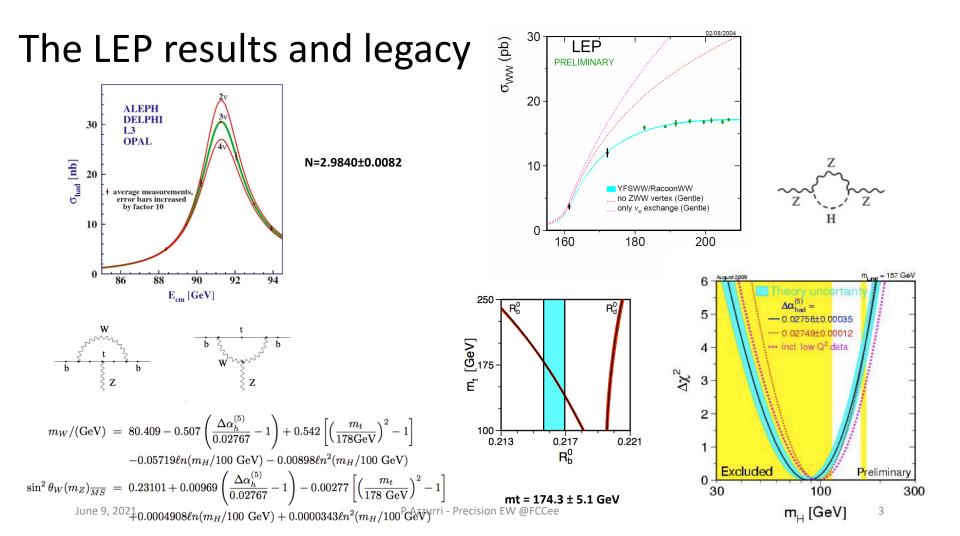
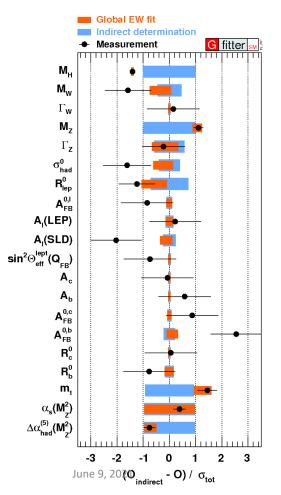
Electroweak Precision Physics at FCC-ee


Paolo Azzurri – INFN Pisa


Weak Interactions and Neutrinos

June 7-12, 2021



http://gfitter.desy.de/Standard_Model

FCCee EW precision

Eur. Phys. J. C (2019) 79:474

Observable	Present value \pm error	FCC-ee stat.	FCC-ee syst.	Comment and dominant exp. error
$m_Z (keV/c^2)$	$91,186,700\pm 2200$	5	100	From Z line shape scan Beam energy calibration
$\Gamma_{\rm Z}$ (keV)	$2,495,200 \pm 2300$	8	100	From Z line shape scan beam energy calibration
R^{Z}_{ℓ} (×10 ³)	$20,767\pm25$	0.06	0.2–1	Ratio of hadrons to leptons acceptance for leptons
$\alpha_{\rm s} \ ({\rm m_Z}) \ (\times 10^4)$	1196 ± 30	0.1	0.4-1.6	From R^Z_ℓ above
$R_b (\times 10^6)$	$216,290\pm 660$	0.3	< 60	Ratio of bb to hadrons stat. extrapol. from SLD
$\sigma_{\rm had}^0 \ (\times 10^3) \ ({\rm nb})$	$41,541\pm37$	0.1	4	Peak hadronic cross-section luminosity measurement
$N_{\nu} (\times 10^3)$	2991 ± 7	0.005	1	Z peak cross sections Luminosity measurement
$\sin^2 \theta_{\rm W}^{\rm eff}$ (×10 ⁶)	$231,\!480\pm160$	3	2–5	From $A_{FB}^{\mu\mu}$ at Z peak Beam energy calibration
$1/\alpha_{\rm QED}~(m_Z)~(\times 10^3)$	$128,952\pm14$	4	Small	From $A_{FB}^{\mu\mu}$ off peak
$A_{FB}^{b,0}$ (×10 ⁴)	992 ± 16	0.02	1–3	b-quark asymmetry at Z pole from jet charge
$A_{FB}^{pol,\tau}$ (×10 ⁴)	1498 ± 49	0.15	< 2	τ Polarisation and charge asymmetry τ decay physics
$m_W (MeV/c^2)$	$80,350\pm15$	0.5	0.3	From WW threshold scan Beam energy calibration
$\Gamma_{\rm W}$ (MeV)	2085 ± 42	1.2	0.3	From WW threshold scan beam energy calibration
$\alpha_{\rm s} \ ({\rm m_W}) \ (\times 10^4)$	1170 ± 420	3	Small	From R^W_ℓ
$N_{\nu} (\times 10^3)$	2920 ± 50	0.8	Small	Ratio of invis. to leptonic in radiative Z returns

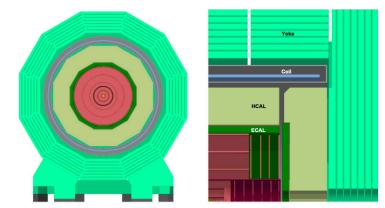
FCCee detector concepts

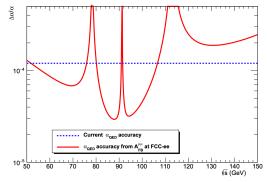
International Detector for Electron-positron Accelerators (IDEA)

- vertex detector
- drift chamber

- preshower detector
- dual-readout calorimeter
- Detector length 1300 cm Preshower Dual Readout Calorimeter DCH z = \pm 200 cm DCH z = \pm 200 cm DCH Rin = 35 cm Cal Rin = 250 cm Cal Rin = 250 cm Cal Rout = 450 cm Magnet z = \pm 300 cm

Concept	CLICdet	CLD	
Vertex inner radius (mm)	31 17		
Tracker half length (m)	2.2		
Tracker outer radius (m)	1.5	2.1	
ECAL absorber	W		
ECAL X_0	22		
HCAL absorber	${\rm Fe}$		
HCAL λ_{I}	7.5	5.5	
Solenoid field (T)	4	2	
Overall height (m)	12.9	12.0	
Overall length (m)	11.4	10.6	




Fig. 7.4. The CLD concept detector: end view cut through (left), longitudinal cross section of the top right quadrant (right).

muon system

Z pole lineshape and decay rates

Data taken at 87.9 GeV (40/ab) + **91.2 GeV (80/ab)** + 93.9 GeV (40/ab) resonant depolarisation on a continuous basis for both beams (ΔE =100 KeV= Δm_z = $\Delta \Gamma_z$)

 $R_{b} = \frac{\Gamma(Z \to b\bar{b})}{\bar{D}}$

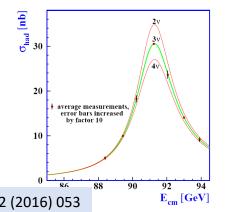
 $\left(g_{Af}\right)$

Direct measurement of $\alpha_{QED}(m_Z^2)$ JHEP 1602 (2016) 053

High precision of FCCee will require higher order perturbative calculations : a **bottleneck** will be represented by the hadronic contributions to the vacuum polarization Rely of a self-normalizing quantity, the forward-backward asymmetry $\Delta \alpha_{\text{QED}}(m_z) \approx 3 \ 10^{-5}$ (rel)

$$A_{\rm FB}^{\mu\mu} = A_{\rm FB,0}^{\mu\mu} + \frac{3}{4} \frac{a^2}{v^2} \frac{\mathcal{I}}{\mathcal{G} + \mathcal{Z}}, \qquad \frac{\Delta \alpha}{\alpha} = \frac{\Delta A_{\rm FB}^{\mu\mu}}{A_{\rm FB}^{\mu\mu} - A_{\rm FB,0}^{\mu\mu}} \times \frac{\mathcal{Z} + \mathcal{G}}{\mathcal{Z} - \mathcal{G}} \simeq \frac{\Delta A_{\rm FB}^{\mu\mu}}{A_{\rm FB}^{\mu\mu}} \times \frac{\mathcal{Z} + \mathcal{G}}{\mathcal{Z} - \mathcal{G}},$$

- R_b Very sensitive to rad. vertex corrections due to new particles
- Important to sort out LEP b-couplings issue
 - Measurement exploits the presence of two b hadrons and b-tagging.
 - Independent from b-tagging efficiency, but not from hemisphere correlations
 - b-tagging performance (vertex detectors) helps in reducing the correlation


June 9, 2021 Correlations sources to be identified and studied with data CCee

 $\Delta R_{b} \approx 1$ (5-20) 10⁻⁵ stat (syst)

 $\Delta R_c \approx 3$ (20-50) 10⁻⁵ stat (syst)

 $\Delta R_{\ell} \approx 0.3$ (1-5) 10⁻⁵ stat (syst) (rel)

 \Rightarrow Δ α_{s} (m_z)≈ 1 (4-20) 10⁻⁵ stat (syst)

Z pole asymmetries

$$A_{f} = \frac{2g_{Vf}g_{Af}}{(g_{Vf})^{2} + (g_{Af})^{2}}$$

$$A_{FB} = \frac{\sigma_{F} - \sigma_{B}}{\sigma_{tot}} = \frac{3}{4}A_{e}A_{f}$$
Can measure for e,µ, t,c,b
$$A_{FB} = \frac{\sigma_{F,R} + \sigma_{B,R} - \sigma_{F,L} - \sigma_{B,L}}{\sigma_{tot}} = -A_{f}$$
Can measure with t's
$$A_{pol} = \frac{\sigma_{F,R} + \sigma_{B,R} - \sigma_{F,L} - \sigma_{B,L}}{\sigma_{tot}} = -A_{f}$$
Can measure with t's
$$A_{pol} = \frac{\sigma_{F,R} - \sigma_{B,R} - \sigma_{F,L} + \sigma_{B,L}}{\sigma_{tot}} = -\frac{3}{4}A_{e}$$

sizably improve **b** asymmetry

combine info of all particles in the hemisphere

•different systematic effects [QCD corrections to be improved]

→ $\Delta A_b \approx 0.2$ (10-30) 10^{-5} stat (syst) $\Delta A_c \approx 0.3$ (20-40) 10^{-5} stat (syst)

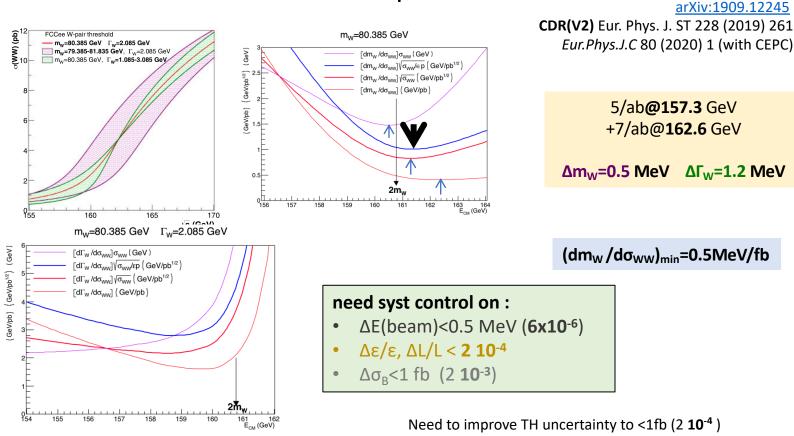
 $A_{FB}(\mu^{+}\mu^{-})$ and $A_{FB}(\tau^{+}\tau^{-})$ can also be considerably improved. $A_{FB}(e^{+}e^{-})$ more difficult because of t-channel.

S-matrix approach : trade statistical power for reduced theoretical assumptions

tau polarization A

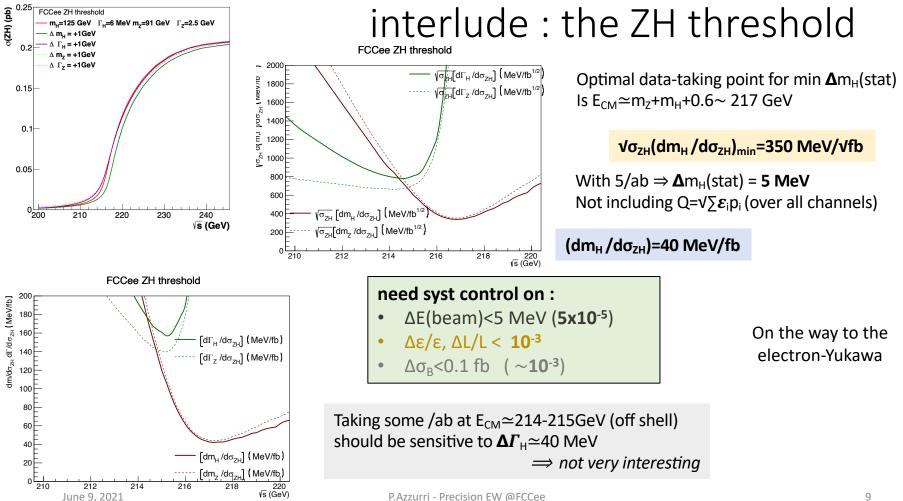
Polarization vs the production angle allows A_e to be separated from A_t : Universality test and $\sin^2 \theta_w$

$$P_{\tau}(\cos\theta) = \frac{A_{pol}(1+\cos^2\theta) + \frac{8}{3}A_{pol}^{FB}\cos\theta}{(1+\cos^2\theta) + \frac{8}{3}A_{FB}\cos\theta}$$


→ ΔA_τ ≈2 (10-20) 10⁻⁵ stat (syst)

Golden channel:

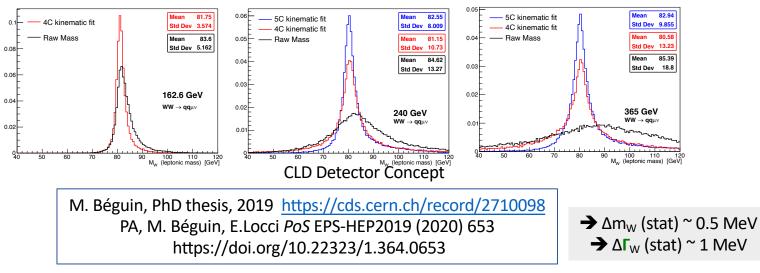
→ $\Delta A_{\mu} \approx 0.3$ (0.9) 10⁻⁵ stat (syst)


→
$$\Delta \sin^2 \theta_{eff} \approx 0.6 \ 10^{-5} (syst)$$

WW threshold lineshape

P.Azzurri - Precision EW @FCCee

arXiv:1703.01626



W kinematic reconstruction

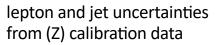
12/ab @157-162 GeV : **50 10⁶ WW** 5/ab @240 GeV : **80 10⁶ WW** 1.65/ab@365 GeV: **20 10⁶ WW** Total ~150M WW

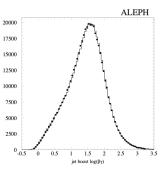
$$M_{\rm Z}^2 = s \frac{\beta_1 \sin \theta_1 + \beta_2 \sin \theta_2 - \beta_1 \beta_2 |\sin(\theta_1 + \theta_2)|}{\beta_1 \sin \theta_1 + \beta_2 \sin \theta_2 + \beta_1 \beta_2 |\sin(\theta_1 + \theta_2)|}$$

θ , β : jet polar angles and velocities

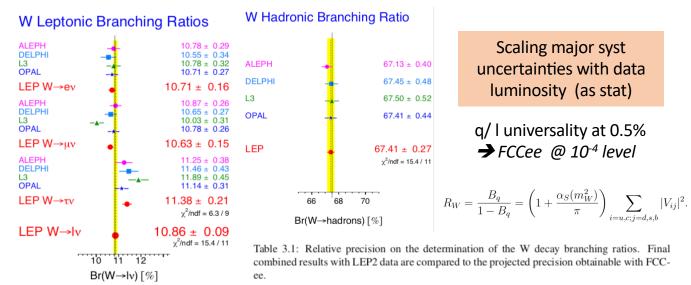
W kinematic reconstruction

 ΔE_{CM} =0.3 MeV at E_{CM} =162GeV with Resonant depolarization


$$M_{
m Z}^2=srac{eta_1\sin heta_1+eta_2\sin heta_2-eta_1eta_2|\sin(heta_1+ heta_2)|}{eta_1\sin heta_1+eta_2\sin heta_2+eta_1eta_2|\sin(heta_1+ heta_2)|}$$


How to obtain ΔE_{beam} ~1MeV at E_{CM} =240-365 GeV ? Can make use of radiative Z-returns (Zy) and ZZ events

What about other syst ?

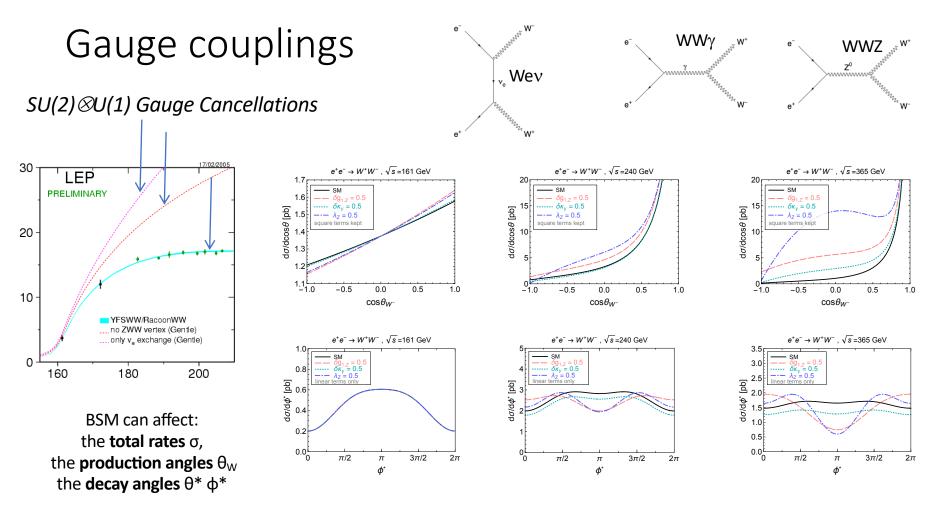

Table 9: Summary of the systematic errors on $m_{\rm W}$ and $\Gamma_{\rm W}$ in the standard analysis averaged ove 183-209 GeV for all semileptonic channels. The column labelled $\ell\nu q\bar{q}$ lists the uncertainties in $m_{\rm W}$ used in combining the semileptonic channels.

	$\Delta m_{\rm W} ~({\rm MeV}/c^2)$			$\Delta\Gamma_{\rm W}~({ m MeV})$				
Source	$e u q \bar{q}$	$\mu u { m q}ar{ m q}$	$ au u$ q $ar{ ext{q}}$	$\ell u \mathrm{q} \mathrm{ar{q}}$	$e u q \bar{q}$	$\mu u { m q}ar{ m q}$	$ au u$ q $ar{ ext{q}}$	$\ell u q \bar{q}$
$e+\mu$ momentum	3	8	-	4	5	4	-	4
$e+\mu$ momentum resoln	7	4	-	4	65	55	-	50
Jet energy scale/linearity	5	5	9	6	4	4	16	6
Jet energy resoln	4	2	8	4	20	18	36	22
Jet angle	5	5	4	5	2	2	3	2
Jet angle resoln	3	2	3	3	6	7	8	7
Jet boost	17	17	20	17	3	3	3	3
Fragmentation	10	10	15	11	22	23	37	25
Radiative corrections	3	2	3	3	3	2	2	2
LEP energy	9	9	10	9	7	7	10	8
Calibration ($e\nu q\bar{q}$ only)	10	-	-	4	20	-	-	9
Ref MC Statistics	3	3	5	2	7	7	10	5
Bkgnd contamination	3	1	6	2	5	4	19	7

W decay BR

Lept universality test at 2% level tau BR ~2.6 σ larger than e/mu \Rightarrow FCCee @ 3-4 10⁻⁴ level

Decay mode relative precision	$B(W \to e\nu)$	$B(W \to \mu \nu)$	$B(W \to \tau \nu)$	$B(W \rightarrow qq)$
LEP2	1.5%	1.4%	1.8%	0.4%
FCC-ee	$3 \cdot 10^{-4}$	$3 \cdot 10^{-4}$	$4 \cdot 10^{-4}$	$1 \cdot 10^{-4}$

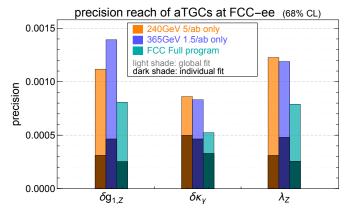

stringent test of CKM unitarity for the five lightest quarks

→ $\Delta \alpha_{s} (m_{w}) \approx (9 \pi/2) \Delta B_{q} \approx 10^{-3}$

Flavor tagging can also allow to measure coupling to c & b-quarks (Vcs, Vcb,..) directly ! $\Delta |V_{cs}| (rel) \approx 3 \ 10^{-4} \ stat$ $\Delta |V_{ub}| (rel) \approx 3-5\% \ stat$ $\Delta |V_{cb}| (rel) \approx 0.2\% \ stat$

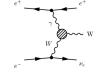
For lept BR will need excellent control of **lepton** id and cross contaminations in signal channels $(\tau \rightarrow e,\mu \text{ and } e,\mu \text{ channels})$

Less stringent requirements for syst uncertainty control for hadr BR

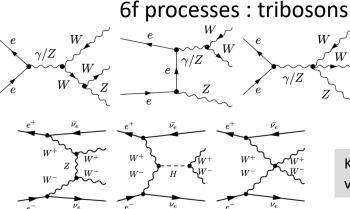


June 9, 2021

Gauge couplings


A binned chi-square fit is performed to estimate the precision reach of the three aTGCs at the FCCee.

Only the semileptonic channel, with one W decaying to e or μ is used. cThe chi-square is summed over all bins of the five angles, considering only statistical uncertainties.

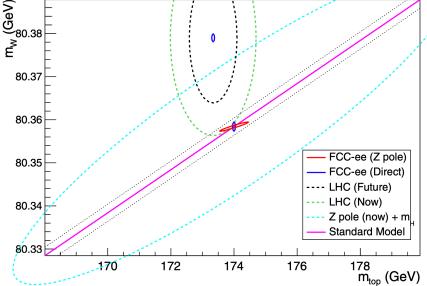


LEP2 precision : 2-4 10⁻²

Other 4f processes

Channel relative pr	recision	WW	ZZ	Wev	Zee
LEP2 183-209	GeV 0).8%	5%	8%	6%
FCCee 162 G	eV 2.	$\cdot 10^{-4}$		$5 \cdot 10^{-4}$	$5 \cdot 10^{-4}$
FCCee 240 G	eV 1.	$\cdot 10^{-4}$	5.10^{-4}	$5 \cdot 10^{-4}$	$1 \cdot 10^{-3}$
FCCee 365 G	eV 3-	$\cdot 10^{-4}$	1.10^{-3}	$5 \cdot 10^{-4}$	$1 \cdot 10^{-3}$

@356 GeV : Similar xsections and luminosity wrt HL-LHC, but much better acceptance & purity


6f VBS

Kinematic threshold at VV mass very small cross sections

Potential of stringent TGC/QGC (EFT dim6 & dim8) explorations also with photons $e+e- \rightarrow WW\gamma ZZ\gamma$

FCCee EW physics : rich program at and above the Z pole

- Core repetition of the LEP physics program with large precision improvements (x20-500) capabilities, and a large number of additional opportunities given the huge luminosity and higher collision energies
 - + Z mass and width, $\alpha_{\text{QED}}(\text{m}_{\text{Z}}),$ N $_{\nu}$
 - R_ℓ , $\alpha_s(m_Z)$, R_b , R_c , ..
 - A_{FB} , $sin^2\theta_{eff}$
 - W mass and width (threshold and kinematic)
 - Direct W universality and CKM elements
 - Gauge couplings
 - Multiboson productions and scattering
 - Z radiative returns (Direct invisible Z width)

 Work still ongoing to evaluate with more care all possibilities, design the measurements, estimate (limiting) systematics, study ways to overcome them, and reflect on the detector design requirements