Searching for Supersymmetry with ATLAS

WIN 2021 | University of Minnesota 09 June 2021

William Fawcett

University of Cambridge On behalf of the ATLAS collaboration

Recent SUSY results from ATLAS: challenging scenarios

Electroweak SUSY The 4 lepton search

Compressed SUSY spectra The disappearing track search

Better late than never The long-lived stopped particle search

• Each of these can decay in a variety of ways, giving a rich set of signatures to search for, not to mention keeping us busy!

Electroweak scale SUSY

- Each sparticle has different decay phenomenology, giving a rich set of signatures
- ATLAS has dedicated groups targeting each of these production mechanisms

G-2 predictions of SUSY models allowed by Run-1 <u>ATLAS pMSSM</u> scan

Electroweak 4 lepton search

arXiv:2103.11684

Run: 359058 Event: 2965933740 2018-08-25 01:51:44 CEST

"The most beautiful 6 lepton event ever displayed"

"Have you considered a 7 lepton signal region?"

4 leptons: R-Parity Conserving models

- Searches for the Higgsino highly motivated from theory
- GGM offers an opportunity to search for the Higgsino without experimentally challenging low-pT leptons

• Signal regions: >=4 e or μ , m_I close to Z mass for both lepton pairs, b-jet veto, E_T^{miss} > 100 or 200 GeV

arXiv:2103.11684

4 leptons: R-Parity Violating models

arXiv:2103.11684

- Two cases considered for RPV decay:
 - $\lambda_{12k} \neq 0$: e or μ
 - $\lambda_{i33} \neq 0$: τ or (e XOR μ)

- Signal regions (L is e or μ):
 - ≥4L ≥0τ
 - ≥3L≥1τ
 - ≥2L ≥2τ

4 leptons: backgrounds

arXiv:2103.11684

- "Reducible" backgrounds: ZZ, ttZ.
 - Estimated with Monte Carlo, normalised with control regions
- "Irreducible" backgrounds: W/Z+jets, ttbar where jet fakes one or more leptons
 - Estimated with fake factor method: a loose-to-tight method where the probability of a fake loose lepton to make it to the signal region is estimated in data

- ZZ and ttZ dominate $\ge 4L \ge 0\tau$ signal region
- Reducible backgrounds dominate $\ge 3L \ge 1\tau$ and $\ge 2L \ge 2\tau$ regions

*Full definition of signal regions in the backup

09 June 2021

4 leptons: interpretation

 W^*

 W^*/Z^*

100

90

80

70E

60

50

40

30

20

10

0^t

200

Z Ĝ) [%]

1

B(Ҳ₁

Disappearing tracks

Run Number: 308084, Event Number: 2658892674

Date: 2016-09-09 19:14:14 UTC

TTTT

Disappearing tracks

p

 π^{\pm}

Electroweak

- Targets ultra-compressed **wino** or **Higgsino**
 - Either through electroweak production or gluino production
- Small mass splitting can make the chargino long lived
 - Typical lifetimes **0.02 ns** (Higgsino) to **0.2 ns** (wino)
- Chargino decays to a soft pion (not reconstructed) and LSP (MET)
- Gives rise to **disappearing track** signature

- **Trigger on MET**
- Target electroweak production with MET > 200 GeV, \geq 1 jet
- Target strong production with MET > 250 GeV, \geq 3 jets

Will Fawcett (University of Cambridge)

09 June 2021

Grey dashed line is theoretical line for pure wino/Higgsino

Stopped long-lived particles

arXiv:2104.03050

Search strategy: trigger on jets produced in empty bunch crossings

Signal region requirements

Jet pT > 150 GeV

Primary vertex veto, muon veto

x2 SRs split by jet η :

- Jet IηI <0.8 "SR C"
- Jet IηI <2.4 "SR inclusive"

09 June 2021

Stopped long-lived particles: backgrounds

Cosmic rays inducing an energetic jet

- Highly energetic bremsstrahlung photon from the cosmic muon
- Removed with impact-parameter style geometrical requirements between the jet and spectrometer segments (remove Ial < 0.2)

Cosmic Rays

Stopped long-lived particles: results

- Sensitive to gluino masses up to 1.4 TeV in the lifetime plateau (10⁻⁵ to 10³s),
 - and up to **1.0 TeV** for lifetimes of 100 ns and up to 10⁷s
- See this wonderful <u>CERN Physics Briefing</u> for more on this search!

09 June 2021

arXiv:2104.03050

Check out these other full run2 publications released in the last 2 months!

Search for sbottoms with b-jets and hadronic taus

arXiv:2103.08189

The mono-jet search

arXiv:2102.10874

Stop pair or leptoquarks to taus

ATLAS-CONF-2021-008

RPV gluinos or stops to at least 1 lepton

ATLAS-CONF-2021-007

- No hints of SUSY at the LHC so far!
- Lots of room still to cover
- Full spectrum of production mechanisms covered
- Challenging Higgsino targeted with GGM scenario
- Ultra-compressed wino and Higgsino with disappearing tracks
- Innovative stopped particle search with custom dataset ruling out many BSM theories
- Stay tuned for more searches to come!

Backup

4 leptons: signal regions

Name	Signal Region	$N(e,\mu)$	$N(au_{ ext{had}})$	N(b-tagged jets)	Z boson	Selection	Target
4 <i>L</i> 0 <i>T</i>	SR0-ZZ ^{loose} bveto	≥ 4	≥ 0	= 0	require 1st & 2nd	$E_{\rm T}^{\rm miss} > 100 {\rm GeV}$	higgsino GGM
	$SR0-ZZ_{bveto}^{tight}$	≥ 4	≥ 0	= 0	require 1st & 2nd	$E_{\rm T}^{\rm miss} > 200 {\rm GeV}$	higgsino GGM
	SR0-ZZ ^{loose}	≥ 4	≥ 0	≥ 0	require 1st & 2nd	$E_{\rm T}^{\rm miss} > 50 {\rm GeV}$	Excess from Ref. [18]
	SR0-ZZ ^{tight}	≥ 4	≥ 0	≥ 0	require 1st & 2nd	$E_{\rm T}^{\rm miss} > 100 {\rm GeV}$	Excess from Ref. [18]
	SR0 ^{loose} bveto	≥ 4	≥ 0	= 0	veto	$m_{\rm eff} > 600 {\rm GeV}$	General
	SR0 ^{tight} _{bveto}	≥ 4	≥ 0	= 0	veto	$m_{\rm eff} > 1250{\rm GeV}$	RPV $LL\bar{E}12k$
	SR0 _{breq}	≥ 4	≥ 0	≥ 1	veto	$m_{\rm eff} > 1300 {\rm GeV}$	RPV LLĒ12k
3 <i>L</i> 1 <i>T</i>	SR1 ^{loose} _{bveto}	= 3	≥ 1	= 0	veto	$m_{\rm eff} > 600 {\rm GeV}$	General
	$SR1_{bveto}^{tight}$	= 3	≥ 1	= 0	veto	$m_{\rm eff} > 1000 {\rm GeV}$	RPV LLĒi33
	$SR1_{breq}$	= 3	≥ 1	≥ 1	veto	$m_{\rm eff} > 1300 {\rm GeV}$	RPV LLĒi33
2L2T	SR2 ^{loose} _{bveto}	= 2	≥ 2	= 0	veto	$m_{\rm eff} > 600 {\rm GeV}$	General
	$SR2_{bveto}^{tight}$	= 2	≥ 2	= 0	veto	$m_{\rm eff} > 1000 {\rm GeV}$	RPV LLĒi33
	SR2 _{breq}	= 2	≥ 2	≥ 1	veto	$m_{\rm eff} > 1100 {\rm GeV}$	RPV LLĒi33
5 <i>L</i> 0 <i>T</i>	SR5L	≥ 5	≥ 0	≥ 0	_	_	General

Ref 18: arXiv:1804.03602

Signal region	Electroweak production	Strong production
Number of electrons and muons Number of pixel tracklets	0 ≥ 1	
$E_{\rm T}^{\rm miss}$ [GeV]	> 200	> 250
Number of jets ($p_T > 20 \text{ GeV}$)	≥ 1	≥ 3
Leading jet p _T [GeV]	> 100	> 100
Second and third jet p _T [GeV]	—	> 20
$\Delta \phi_{min}^{\text{jet}-E_{\text{T}}^{\text{miss}}}$	> 1.0	> 0.4

Stopped long-lived particles: signal regions

Region	Data sample	Number of	Leading	α	Leading jet	Leading
		muons	jet p _T [GeV]		w_{ϕ}	jet η
Central signa	al region					
			150-300			
SRC	Search sample	0	300-500	> 0.2	> 0.02	< 0.8
			> 500			
Inclusive signal region						
			150-300			
SRIncl	Search sample	0	300-500	> 0.2	> 0.02	< 2.4
			> 500			
Central discovery regions						
DRC-150	Search sample		> 150			
DRC-300	(2018 data only)	0	> 300	> 0.2	> 0.02	< 0.8
DRC-500			> 500			
Inclusive discovery regions						
DRIncl-150	Search sample		> 150			
DRIncl-300	(2018 data only)	0	> 300	> 0.2	> 0.02	< 2.4
DRIncl-500			> 500			

Data sample	Bunch	Trigger	Offline
(purpose)	structure	requirements	requirements
Search sample	Empty	HLT jet $p_{\rm T} > 55$ GeV	Leading jet $p_{\rm T} > 90 \text{ GeV}$
		HLT $E_{\rm T}^{\rm miss} > 50 {\rm GeV}$	
		HLT jet $ \eta < 2.4$	Leading jet $ \eta < 2.4$
Cosmic sample	_	L1 jet $p_{\rm T}$ > 12 GeV	Leading jet $p_{\rm T} > 90 \text{ GeV}$
			Leading jet $ \eta < 2.4$
Beam-induced background sample	Unpaired	L1 jet $p_{\rm T}$ > 12 GeV or	Leading jet $p_{\rm T} > 90 {\rm GeV}$
		L1 jet $p_{\rm T} > 50 \text{ GeV}$	
			Leading jet $ \eta < 2.4$
Cavern background sample	Empty	Random	_

Electroweak SUSY

• Charginos and neutralinos labelled in mass order from lightest to heaviest

$$\tilde{\chi}^{0}_{1,2,3,4} \qquad \tilde{\chi}^{\pm}_{1,2}$$

- Coannihilation "natural" for higgsinos
- Bino requires another SUSY particle to be compressed, e.g. the slepton
- Both leave the same signature: a pair of soft leptons
- Can search for Binos and Higgsinos at the same time

1. In "natural" SUSY models, higgsinos should be light

$$-\frac{m_Z^2}{2} = |\mu|^2 + m_{H_u}^2$$

- μ (which controls all higgsino masses) and $m^2_{H_u}\,$ (set by stop and gluino masses) should both be small for fine-tuning to be minimal
- Higgsino masses affect fine-tuning at tree-level!
- 2. If the lightest neutralinos and charginos are dominated by the higgsino, the mass splitting between them will be small: O(100 MeV several GeV)
 - The mass splitting is determined by how dominant the higgsino component is
- 3. Large datasets at the LHC mean we are finally competitive with LEP limits!

Mono-jet: dark matter signatures = SUSY signatures <u>arXiv:2102.10874</u>

Mono-jet: search strategy

arXiv:2102.10874

- Select events with at least 1 energetic jet, no leptons or photons
- Leading jet $p_{\rm T}$ > 250 GeV, $E_{\rm T}^{\rm miss}$ > 200 GeV
- Seek increase in events at high "recoil pT"
- Can search for direct DM production, SUSY or Dark Energy!

- No excess in high recoil pT events found.
- Can translate this into WIMP-proton scattering cross-section.
- Complementary to direct-detection searches e.g. PICO experiment.
- Also can constrain SUSY models, does particularly well in compressed scenario.

More interpretations of the mono-jet search

Number of Extra Dimensions

ATLAS p(henomenological) MSSM summary paper

Will Fawcett (University of Cambridge)

09 June 2021