W⁺W⁻H production through bottom quarks fusion at hadron colliders

Biswajit Das

Institute of Physics, Bubaneswar, India

WIN2021, University of Minnesota, June 9, 2021

Overview

- Motivation
- 2 Diagrams
- 3 Coupling order
- 4 Amplitude Computation
- Divergence issues
 - UV divergence
 - IR divergence
- 6 Results
 - SM prediction
 - Anomalous coupling effects
- Summary

Motivation : $b \bar{b} \longrightarrow W^+W^-H$

- Higgs sector in SM is not well explored, in particular HHH,
 HHHH and VVHH couplings are still not well measured.
- Few processes can probe the *VVHH* coupling.
 - VBF mechanism for HH production

At HL-LHC the bound could be $0.55 < \kappa_{V_2H_2} < 1.65$ at 95% confidence level. But the bound comes from both coupling *WWHH* and *ZZHH*.

Motivation

Higgs-strahlung: HHV (V=W, Z) production

At the HL-LHC the bound will be quite weak $-9 < \kappa_{V_2H_2} < 11$.

• VVH (V=W, Z) production

We can probe two VVHH couplings separately.

Motivation

pp o WWH(LO)	gg	qq	bb
$\sigma(\mathit{fb})$ at 14TeV	0.29	8.66	0.25
$\sigma(\mathit{fb})$ at 27TeV	1.34	23.0	1.31
$\sigma(\mathit{fb})$ at 100TeV	17.4	126.8	20.6

- The $b\bar{b}$ contribution is sizeable. One should probe it in QCD regime.
- One can study the polarization dependence of physical observables which will be very useful for background suppression.

Feynman diagrams:

Feynman Diagrams:

- Total number of diagrams :
 - LO: 20 diagrams
 - NLO: Pentagon + Box + Triangle + Self Energy diagrams.
 Total 121 NLO diagrams.
- The trick is to calculate the minimum no. of diagrams, called *prototype diagrams* and then map the rest of the diagrams to those prototype diagrams.
 - LO prototype diagrams are 10
 - Loop-level prototype diagrams are 30.

Coupling Order:

$$\mathcal{M} \sim g_w^3 \mathcal{M}_{LO} + g_s^2 g_w^3 \mathcal{M}_{NLO} + \mathcal{O}(g_s^4)$$
$$\mid \mathcal{M} \mid^2 \sim \alpha_w^3 \mid \mathcal{M}_{LO} \mid^2 + \alpha_s \alpha_w^3 . 2 \text{Re}(\mathcal{M}_{LO}.\mathcal{M}_{NLO}^*) + \mathcal{O}(\alpha_s^2)$$

Techniques to compute amplitudes:

- We compute helicity amplitudes by using spinor helicity formalism at the matrix element level.
- We use four-dimensional helicity (FDH) scheme to compute the amplitudes where all the γ -matrices, momentums and spinors are taken in 4-dimensions.
- In one-loop amplitude, individual one-loop Feynman diagram will give rise to tensor integrals containing powers of the loop momentum in the numerator.
- We use an in-house routine OVReduce, based on Oldenborgh-Vermaseren reduction techniques to reduce tensor integrals in terms of scalar integrals.
- We use the 'OneLOop' package for scalar integrals computation.

UV divergence : Vertex CT diagrams

- QCD renormalizes the fermion mass.
- Higgs vertex will be renormalized due to mass involved in coupling.

- The Coupling strength of $Hf\bar{f}$ vertex is $-\frac{ig}{2}\frac{m_f}{m_W}$.
- Counterterm for $Hf\bar{f}$ vertex is $-\frac{ig}{2}\frac{\delta m_f}{m_W}$. Where $\delta m_f = -\frac{\alpha_s}{4\pi}C_F\frac{6}{\epsilon}$.

UV divergence

UV divergence : Self-energy CT diagrams

- Counterterm for self energy diagram : $-i(\not p \delta Z_2 m_f \delta Z_m)$
- $\delta Z_2 = -\frac{\alpha_s}{4\pi} C_F \frac{2}{\epsilon}$ and $\delta Z_m = -\frac{\alpha_s}{4\pi} C_F \frac{8}{\epsilon}$.

Infrared divergence:

• IR or "mass singularities" arises from two kinds of singularities called the *collinear* and *soft* singularity. Singularities appear as $\sim ln(m/Q)$, where m is the mass of the particle and Q is a large scale.

For the massless case

$$\sim 1/\epsilon \; , \; 1/\epsilon^2 \qquad [\; \epsilon = (4-D)/2]$$

- Because of light quarks and gauge bosons, most of the one-loop diagrams are IR singular.
- The real emission diagrams are also IR singular in soft and collinear regimes.
- The real emission and renormalized virtual amplitudes are both divergent in 4-dimension, but the sum of these two is finite.
- Three real emission sub-process can contribute to σ^{NLO} . 1. $b\bar{b} \to W^+W^-Hg$, 2. $g\bar{b} \to W^+W^-H\bar{b}$ and 3. $bg \to W^+W^-Hb$

Subtraction scheme

- The real emission sub-processes starting with gluon have *t*-quark resonant diagrams which jeopardize the perturbative computations.
- We use *b*-quark tagging with 100% efficiency. We exclude these two sub-processes to avoid the *t*-quark resonances.
- We implemented the Catani-Saymour dipole subtraction method to remove IR singularities. The *I*-term exactly cancel the IR singularities in virtual diagrams and dipole terms $\mathcal{D}_{ij,k}$ exactly cancel IR singularities in real emission diagrams.

Results: SM predictions

We took SM parameters from PDG 2016. We use CT14lo and CT14nlo PDF set for LO and NLO cross section calculation respectively. We take \overline{MS} and On-shell renormalization scheme for massless and massive fermions respectively. The following results are in the ab unit for different CMEs with the scale uncertainties.

TeV	$\sigma_0(\alpha_w^3)$	$\sigma_{qcd}^{NLO}(\alpha_s\alpha_w^3)$	RE
14	$217^{+16.1\%}_{-18.9\%}$	289 ^{+17.6} %	33.2%
27	$1086^{+19.2\%}_{-20.5}$	$1559^{+18.0\%}_{-20.8}$	43.6%
100	$15258^{+22.0\%}_{-20.9\%}$	$23097^{+20.6\%}_{-21.0\%}$	51.4%

The relative enhancement is defined as $RE = (\frac{\sigma_{qcd}^{NLO} - \sigma_0}{\sigma_0})$. We choose a dynamical scale as

$$\mu_R = \mu_F = \mu_0 = \frac{1}{3} \left(\sqrt{p_{T,W^+}^2 + M_W^2} + \sqrt{p_{T,W^-}^2 + M_W^2} + \sqrt{p_{T,H}^2 + M_H^2} \right)$$

Results: SM predictions

Polarization dependence of cross section :

Pol.(W+W-)	14 TeV (ab)			100 TeV (ab)		
FOI.(VV VV)	σ_0	σ_{qcd}^{NLO}	<i>RE</i> (%)	σ_0	σ_{qcd}^{NLO}	<i>RE</i> (%)
++	13	18	38.5	702	1056	50.4
+-	18	25	38.9	965	1499	55.3
+0	37	49	32.4	2568	3336	29.9
-+	4	6	50.0	229	334	45.9
	13	18	38.5	707	1044	47.7
-0	22	28	27.3	1454	1346	-7.4
0+	22	28	27.3	1470	1216	-17.3
0-	37	49	32.4	2583	3151	22.0
00	51	67	31.4	4490	9748	117.1
\sum	217	289	32.2	15258	23097	51.4

Where $+ \equiv \frac{1}{\sqrt{2}} (\epsilon_x + i\epsilon_y), - \equiv \frac{1}{\sqrt{2}} (\epsilon_x - i\epsilon_y)$ and $0 \equiv \epsilon_z$.

Here we can see that there are huge contributions and increments in '00' polarization mode.

SM prediction

p_T -distributions :

Figure: The NLO differential cross section distribution with respect to transverse momentums (p_T) for 14 and 100 TeV CMEs.

SM prediction

Invariant Mass distributions:

Figure: The NLO differential cross section distribution with respect to invariant masses $(M_{ii/iik})$ for 14 and 100 TeV CMEs.

Differential distributions:

Figure: The LO and NLO differential cross section distribution with respect to transverse momentums (p_T) and invariant masses $(M_{ij/ijk})$ for 100 TeV CME.

Differential distributions:

Figure: The LO and NLO differential cross section distribution with respect to invariant masses (M_{WWH}) for 100 TeV CME.

Anomalous coupling effects : κ -framework

CME(TeV)	$\kappa_{V_2H_2}$	$\sigma^{LO}[ab]$	RI	$\sigma^{NLO}[ab]$	RI
	1.0 (SM)	217		289	
14	2.0	216	[-0.5%]	288	[-0.3%]
	-2.0	222	[+2.3%]	295	[+2.1%]
	1.0(SM)	15258		23097	
100	2.0	14925	[-2.2%]	22607	[-2.1%]
	-2.0	16997	[+11.4%]	25465	[+10.3%]

Table: Effect of anomalous *WWHH* coupling on the total cross section at 14 and 100 TeV CMEs. Where RI = $\frac{\sigma_{\kappa_{V_2H_2}} - \sigma_{SM}}{\sigma_{SM}}$.

$\kappa_{V_2H_2}$	$\sigma^{LO}[ab]$	RI	$\sigma^{\mathit{NLO}}[ab]$	RI
1.0 (SM)	4490		9748	
2.0	4159	[-7.4%]	9544	[-2.1%]
-2.0	6164	[+37.2%]	11993	[+23.0%]

Table: Effect of anomalous *VVHH* coupling in '00' mode at 100 TeV CME.

Differential distributions:

Figure: Effect of anomalous *VVHH* coupling on the differential cross section distribution at 100 TeV CME.

Differential distributions:

Figure: Effect of anomalous *VVHH* coupling on the differential cross section distribution at 100 TeV CME.

Summary

- We have focused on the NLO QCD correction to $b\bar{b} \to W^+W^-H$. This process has significant dependence on *VVHH* coupling.
- The contribution of this process to $pp \to W^+W^-H$ is only about 10-15% of that light quark scattering. But when both W-bosons are longitudinally polarized then this fraction can increase to 50%.
- At 100 TeV the NLO corrections are about 50% but the corrections are about 115%, when both W-bosons are longitudinally polarized.
- Our study suggests that the measurement of the polarization of the final state W/Z-bosons can be a useful tool to measure the couplings of the vector bosons and Higgs boson.
- Total cross section enhanced by 10% and cross section in '00' mode enhanced by 20 30% when we set $\kappa_{V_2H_2} = -2$.
- We find that the invariant mass and the p_T distributions are considerably harder for the negative values of $\kappa_{V_2H_2}$. This can also be useful to put a stronger bound on the coupling.

Thank You