

Implications of the Muon Anomalous Magnetic Moment for 3-3-1 models

Introduction

The Dirac equation predicts at tree level the muon magnetic moment of any charged fermion as follows, $\overrightarrow{\mu_{\mu}} = g_{\mu} \frac{q}{2m_{\mu}} \vec{S}$, where $g_{\mu} = 2$ is the gyromagnetic ratio, m_{μ} , q and S are the muon mass, the electric charge and the spin respectively. However, through quantum corrections at the loop $g_{\mu} \neq 2$, leading us to define the **Muon Anomalous Magnetic Moment** as $a_{\mu} \equiv \frac{g_{\mu}-2}{2}$.

Figure 1: Feynman diagrams of the corrections to a_{μ} on SM interactions: (a) 1^{st} order QED; lowestorder (b) weak and (c) hadronic effects.

The current discrepancy between the experimental and the theoretical values of the a_{μ} showing that the behavior of muons is in a way not predicted by the Standard Model (SM) $(\Delta a_{\mu} = 251(59) \times 10^{-11} (4.2\sigma) - 2021[1])$. Therefore, it is of great interest to analyze the effects of new particles contributing to $g_{\mu} - 2$ through virtual loops. Consequently, we will explore new physics contributions to a_{μ} in models focused on the $SU(3)_{C} \times SU(3)_{L} \times U(1)_{X}$ gauge symmetry.

3-3-1 models

There are models based on $\mathcal{G}_{3-3-1} = SU(3)_{C} \times SU(3)_{L} \times U(1)_{X}$ (3-3-1) gauge symmetry: Minimal [2], with right-handed neutrinos (r.h.n) [3], with neutral lepton(LHN) [4], economical [5] and with exotic leptons [6]. These models are quite popular, because they can explain: neutrino masses, dark matter, meson oscillations, flavor violation, collider physics.

The scalar sector

The 3-3-1 models contain between 2 or 3 scalar triplets (χ , η , ρ) to give the masses of the fermions. The 3-3-1 gauge symmetry experiences the following spontaneous symmetry breaking:

SSB:
$$SU(3)_{L} \times U(1)_{X} \xrightarrow{\langle \chi \rangle} SU(2)_{L} \times U(1)_{Y} \xrightarrow{\langle \eta \rangle, \langle \rho \rangle} U(1)_{Q}$$

with VEV different scales: $v_{\chi} \gg v_{\eta}$, v_{ρ} .

The leptonic sector

The 3-3-1 models contain fermionic triplets f_{I}^{a} ,

Minimal 3-3-1 Model:
$$f_L^a = \begin{pmatrix} \nu^a \\ \ell^a \\ (\ell^c)^a \end{pmatrix}$$
, 3-3-1 L.H.N: $f_L^a = \begin{pmatrix} \nu^a \\ \ell^a \\ N^a \end{pmatrix}$

3-3-1 r.h.n and Economical models:

3-3-1 with Exotic Leptons:

$$f_{1L} = \begin{pmatrix} \nu_1 \\ \ell_1 \\ E_1^- \end{pmatrix}; I_1^c; f_{2,3L} = \begin{pmatrix} \nu_{2,3} \\ \ell_{2,3} \\ N_{2,3} \end{pmatrix}; I_{2,3}^c \quad f_{4L} = \begin{pmatrix} E_2^- \\ N_3 \\ N_4 \end{pmatrix}; E_2^c; f_{5L} = \begin{pmatrix} N_2 \\ E_2 \\ \ell_2 \end{pmatrix}; f_{5L} = \begin{pmatrix} N_2 \\ E_2 \\ \ell_2 \end{pmatrix}; f_{5L} = \begin{pmatrix} N_2 \\ E_2 \\ \ell_2 \end{pmatrix}; f_{5L} = \begin{pmatrix} N_2 \\ E_2 \\ \ell_2 \end{pmatrix}; f_{5L} = \begin{pmatrix} N_2 \\ E_2 \\ \ell_2 \end{pmatrix}; f_{5L} = \begin{pmatrix} N_2 \\ E_2 \\ \ell_2 \end{pmatrix}; f_{5L} = \begin{pmatrix} N_2 \\ E_2 \\ \ell_2 \end{pmatrix}; f_{5L} = \begin{pmatrix} N_2 \\ E_2 \\ \ell_2 \end{pmatrix}; f_{5L} = \begin{pmatrix} N_2 \\ E_2 \\ \ell_2 \end{pmatrix}; f_{5L} = \begin{pmatrix} N_2 \\ E_2 \\ \ell_2 \end{pmatrix}; f_{5L} = \begin{pmatrix} N_2 \\ E_2 \\ \ell_2 \end{pmatrix}; f_{5L} = \begin{pmatrix} N_2 \\ E_2 \\ \ell_2 \end{pmatrix}; f_{5L} = \begin{pmatrix} N_2 \\ E_2 \\ \ell_2 \end{pmatrix}; f_{5L} = \begin{pmatrix} N_2 \\ E_2 \\ \ell_2 \end{pmatrix}; f_{5L} = \begin{pmatrix} N_2 \\ E_2 \\ \ell_2 \end{pmatrix}; f_{5L} = \begin{pmatrix} N_2 \\ E_2 \\ \ell_2 \end{pmatrix}; f_{5L} = \begin{pmatrix} N_2 \\ E_2 \\ \ell_2 \end{pmatrix}; f_{5L} = \begin{pmatrix} N_2 \\ E_2 \\ \ell_2 \end{pmatrix}; f_{5L} = \begin{pmatrix} N_2 \\ \ell_2 \end{pmatrix}; f_$$

Where a = 1, 2, 3 is the generation index, ν and ℓ are the SM leptonic particles, ν^{c} is the r.h.n. In the 3-3-1 L. H. N model, N is the heavy neutral lepton, and in the 3-3-1 with Exotic Leptons model N and E are the exotic neutral and charged leptons, respectively.

Figure 2: Feynman diagrams that illustrate the new gauge boson and new scalar field interactions with leptons that contribute to the g_{μ} – 2 in the 3-3-1 models investigated in this work. Where $U^{\pm\pm}$, W'^- , K^- , K^0 and Z' are new gauge bosons, and ϕ and ϕ^- stand for the new neutral and singly charged scalar fields in the 3-3-1 models.

(k)

(j)

Álvaro S. de Jesus¹, Sergey Kovalenko², C. A. de S. Pires³, Farinaldo S. Queiroz¹, Yoxara S. Villamizar^{1*} ¹International Institute of Physics, Universidade Federal do Rio Grande do Norte, Campus Universitário, Lagoa Nova, Natal-RN 59078-970, Brazil ²Departamento de Ciencias Físicas, Universidad Andres Bello, Sazié 2212, Santiago, Chile ³Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-970, Joao Pessoa, PB, Brazil

; $\ell_R^{,}$ N_R^{a} ,

; E₃^C

Results

3-3-1 models available at https://bit.ly/2vFZLnG.

Figure 3: Overall contribution to Δa_{μ} from the 3-3-1 models: (a) Minimal 3-3-1, (b) 3-3-1 r.h.n, (c) and (d) 3-3-1 L.H.N for $M_N = 1 \text{ GeV}$ and $M_N = 100 \text{ GeV}$ respectively, (e) Economical 3-3-1 and (f) 3-3-1 with exotic leptons for $M_N = 100 GeV$ and $M_E = 500 GeV$. The green bands are delimited by $\Delta a_{\mu} = (261 \pm 78) \times 10^{-11} (3.3\sigma)[7, 8]$. The projected 1σ bound is found by requiring $\Delta a_{\mu} < 78 \times 10^{-11}$ while the bound is obtained for $\Delta a_{\mu} < 34 \times 10^{-11}$.

Table 1: Summary of the lower bounds of the gauge bosons masses based on our calculations.

Model	LHC-13 TeV	g-2 current [GeV]	g-2 projected [GeV]
Minimal 3-3-1	$M_{Z'} > 3.7 \text{TeV}$ [9] $M_{W'} > 3.2 \text{TeV}$ [9]	$M_{Z'} > 434.5$ $M_{W'} > 646$	$M_{Z'} > 632$ $M_{W'} > 996.1$
3-3-1 r.h.n	<i>M_{Z'}</i> > 2.64TeV [10] -	$M_{Z'} > 158 \ M_{W'} > 133$	$M_{Z'} > 276.5$ $M_{W'} > 239$
3-3-1 LHN $(M_N = 1 GeV)$	<i>M_{Z'}</i> > 2 TeV [10] _	$M_{Z'} > 160 \ M_{W'} > 134.3$	$M_{Z'} > 285$ $M_{W'} > 238.3$
3-3-1 LHN $(M_N = 100 GeV)$	<i>M_{Z'}</i> > 2 TeV [10] _	$M_{Z'} > 136.7$ $M_{W'} > 114.2$	$M_{Z'} > 276.5$ $M_{W'} > 231$
Economical 3-3-1	<i>M_{Z'}</i> > 2.64TeV [10] -	$M_{Z'} > 59.3$ $M_{W'} > 49.5$	$M_{Z'} > 271.4$ $M_{W'} > 226.7$
3-3-1 with exotic leptons $M_N(M_E) = 10(150) GeV$	$M_{Z'} > 2.91 \text{TeV}[11]$	$M_{Z'} > 429$ $M_{W'} > 359$	$M_{Z'} > 693$ $M_{W'} > 579.6$
3-3-1 with exotic leptons $M_N(M_E) = 100(150) GeV$	$M_{Z'} > 2.91 \text{TeV}[11]$	$M_{Z'} > 369$ $M_{W'} > 309.1$	$M_{Z'} > 600$ $M_{W'} > 501.4$

In the Table 1 the lower bounds can be seen on masses of the gauge bosons, derived for the 3-3-1 model, where the LHC bounds are based on either $36fb^{-1}$ or $139fb^{-1}$ of the data. The lower mass bounds on the Z' and W' bosons from the 3-3-1 r.h.n model are also applicable to the Economical 3-3-1 model as they have the same interactions.

None of the five models investigated here can accommodate the anomaly in agreement with existing bounds.

Extended version of the 3-3-1 LHN Model

The 3-3-1 LHN model augmented by an inert scalar triplet

The inert scalar triplet allows us to include $\mathcal{L} \supset y_{ab}\bar{f}_a\phi e_{bR}$, taking $y_{22} = 1$. Such scalar triplet gets a mass from the quartic coupling in the scalar potential $(\lambda \phi^{\dagger} \phi \chi^{\dagger} \chi)$, after the scalar triplet χ acquires a vev.

Conclusions

- assuming the anomaly is otherwise resolved.
- magnetic moment.
- triplet.

Acknowledgement

participation in this event:

References

ppm. *Physical Review Letters*, 126(14):141801, 2021. [2] F. Pisano and V. Pleitez. An SU(3) × U(1) model for electroweak interactions. Phys. Rev., D46:410-417, 1992. [3] Hoang Ngoc Long. SU(3)-L x U(1)-N model for right-handed neutrino neutral currents. *Phys. Rev.*, D54:4691–4693, 1996

High Energy Phys., 20:303–317, 2009 [8] M. Tanabashi et al. Review of Particle Physics. Phys. Rev., D98(3):030001, 2018.

[9] Andre Nepomuceno and Bernhard Meirose. Limits on 331 vector bosons from LHC proton collision data. Phys. Rev., D101(3):035017, 2020. [10] Manfred Lindner, Moritz Platscher, and Farinaldo S. Queiroz. A Call for New Physics : The Muon Anomalous Magnetic Moment and Lepton Flavor Violation. Phys. Rept., 731:1–82, 2018. [11] Camilo Salazar, Richard H. Benavides, William A. Ponce, and Eduardo Rojas. LHC Constraints on 3-3-1 Models. JHEP, 07:096, 2015.

We have conclusively presented a solution to the muon anomalous magnetic moment in the context of 3-3-1 models.

1. We concluded that none of the five models investigated here can accommodate the anomaly. 2. We derived robust and complementary 1σ lower mass bounds on the masses of the new gauge bosons, namely the Z' and W' bosons, that contribute to muon anomalous magnetic moment

3. The 3-3-1 models must be extended to explain the anomaly observed in the muon anomalous

4. Solution: we presented a plausible extension to the 3-3-1 LHN model, which features an inert scalar

- [5] P. V. Dong, Hoang Ngoc Long, D. T. Nhung, and D. V. Soa. $SU(3)(C) \times SU(3)(L) \times U(1)(X)$ model with two Higgs triplets. *Phys. Rev.*, D73:035004, 2006.
- [6] William A. Ponce, Juan B. Florez, and Luis A. Sanchez. Analysis of SU(3)(c) x SU(3)(L) x U(1)(X) local gauge theory. Int. J. Mod. Phys., A17:643–660, 2002.
- [7] Joaquim Prades, Eduardo de Rafael, and Arkady Vainshtein. The Hadronic Light-by-Light Scattering Contribution to the Muon and Electron Anomalous Magnetic Moments. Adv. Ser. Direct.