Deep Underground Neutrino Experiment: DUNE

Andrea Zani, INFN Milano
for the DUNE Collaboration

Weak Interactions and Neutrinos – WIN 2021
7-12 June 2021
Deep Underground Neutrino Experiment

- Long-baseline (LB - 1300 km) experiment:
 - Neutrino and antineutrino beams
- ~70 kton volume far detector, 1.5 km underground, divided in 4 modules
- Multi-technology Near Detector, focused on beam characterization and physics
- >20 years foreseen life span

- **Primary physics goals:**
 - 3-neutrino oscillations parameters: $\nu_\mu/\overline{\nu}_\mu$ disappearance, $\nu_e/\overline{\nu}_e$ appearance
 - δ_{CP}; mass hierarchy
- **SuperNova** burst neutrinos
- **Beyond-Standard-Model physics:** baryon number violation, sterile neutrinos, non-standard interactions, etc.
The DUNE Collaboration

- World-spanning community
- Draws on years-long experience of LAr-TPC based neutrino experiments
 - > 1300 collaborators
 - > 200 institutions & CERN
 - 33 countries
DUNE at WIV 2021

- DUNE- & ProtoDUNE-related posters @ WIN 2021 (not exhaustive list)

 - “3-Dimensional reconstruction in DUNE”
 - “Deep Learning Based Event Reconstruction at DUNE”
 - “A Vertical Drift LArTPC for the DUNE experiment”
 - “Effects of the LBNF Neutrino Beam Focusing Uncertainties on DUNE Neutrino Fluxes with a Focus on the Decay Pipe”
 - “The System for on-Axis Neutrino Detection of the DUNE Near Detector complex”
 - “Characterization of the DUNE photodetectors and study of the event burst phenomenon”
 - “Measurements and enhancement of the X-Arapuca light detection efficiency”
 - “Towards an Inelastic Cross Section Measurement of 6 GeV Kaons on Argon at ProtoDUNE Single-Phase”
 - “Electron Diffusion in the ProtoDUNE-SP LArTPC”
 - “Identification and Reconstruction of Michel Electrons in ProtoDUNE-SP”

Etienne Chardonnet
Jianming Bian
Sabrina Sacerdoti
Pierce Weatherly
Valerio Pia
Marco Guarise
Henrique Souza
Richard Diurba
Elise Hinkle
Aleena Rafique
Content

• Introduction to DUNE and its physics goals
 – The LBNF infrastructure
 – The Near Detector Site
 – The Far Detector Site and technologies

• The Physics Potential of DUNE
 – Precision neutrino physics measurements
 – Beyond the Standard Model (BSM) searches

• The DUNE prototypes at CERN
 – The “cauldron” where large-scale R&D takes place
 – Validation and characterization of DUNE modular design on full scale prototypes
Long Baseline Neutrino Facilities

- **Infrastructures**
 - Excavation works at SURF for Far Detector (FD) caverns
 - Design work for Near Detector (ND) site, due to submission for approval within few months
Long Baseline Neutrino Facilities

- **Beam line** design under way
 - 60-120 GeV proton beam
 - 5.8 degree vertical bend, to reach SURF
 - 1.2 MW by late 2020’s, upgradable to 2.4 MW
 - Assumed minimum uptime of 55%

\[(1.1-1.9) \times 10^{21} \text{ POT*/y} @ 1.2 \text{ MW} \]
\[10 \mu s \text{ pulse duration} \]
*Protons On Target

EPIC (2020) 80, 978
The Near Detector Station

- **DUNE ND complex**
 - Located 574 m from proton beam target
 - Precise characterization of neutrino beam
 - Limitation of cross-section uncertainties for LB neutrino oscillation measurements
The Near Detector Station

- Multiple complementary systems:
 - **ND-LAr** primary target, modular, pixelated charge read-out LAr-TPC (300 ton)
 - Module 0 successfully tested at Univ. Bern
 - **ND-GAr**: high-pressure GAr-TPC, surrounded by ECAL and magnet
 - intercepts muons escaping LAr-TPC
 - Muon spectrometer; nuclear interaction model constraints
 - Will come at a later stage. A Temporary Muon Spectrometer (TMS) will be installed at Day 1
 - **SAND**: inner tracker surrounded by 100 ton ECAL and SC magnet (0.6 T)
 - On-axis beam monitor (spectrum/stability)

PRISM: ND-LAr and TMS/ND-GAr can move up to 30 m Off-Axis for beam characterization and lower-energy ν detection
Far Detector Site - SURF

• 4 Detector modules, \(~17\) kton total volume each
 - Construction in stages
• FD #1, #2 will be single-phase (SP) LAr-TPCs, with Horizontal Drift (HD) and Vertical Drift (VD), respectively
• FD #1 construction starts in mid 2020’s
• Maximal cryostat external dimensions: \(~66 \times 19 \times 18\) m (LxWxH)
LAr-TPC technology

- Charge/light production and collection with wire read-out (HD technology)

- Mature, reliable technology (ICARUS, MicroBooNE)
- Fully compatible with very-long expected life span of the detectors

Other read-out solutions:
- Pixels (ND LAr-TPC)
- Perforated PCBs (Vertical Drift)

Liquid Argon TPC

Charged particles

Cathode Plane

Incoming Neutrino

E_{drift}

Sense Wires

U, V, X

V wire plane waveforms

X wire plane waveforms

LArPix anode

32 x 32 cm

4.9k pixels

Three planes (3D corner detail)

Collection 0°

Induction 90°

Induction 48°

Shield Grid
Far Detector #1 (Horizontal Drift)

- Structure wholly suspended on roof
- Alternating Anode and Cathode Plane Assemblies (APA – CPA)
 - 4 drift volumes, 3.6 m drift / Electric field = 500 V/cm (HV = -180 kV)
 - High-resistivity CPA for fast discharge prevention
- Anode: 150 APAs, each with 4 wire planes (Grid, 2 x Induction, Collection)
 - Wrapped induction wires
- Photon Detectors: X-ARAPUCA light traps
 - 10 modules / APA
 - Timing
 - Cosmic / SN / BSM event triggering
Far Detector #1 (Horizontal Drift)

1 SuperCell = ¼ PDS module -- SiPM readout
High-reflectivity inner surfaces
Wavelength-shifting + dichroic filter for light trapping

2560 wires/unit -- Inter-plane distance = 4.75 mm
Far Detector #2 (Vertical Drift)

- Single-phase, read-out on cryostat top and bottom
- 2 x 6 m drift \Rightarrow 300 kV HV on (central) cathode
- Technological challenges on many detector aspects (HV, LAr Purity, Photon Detection,…)
- Strong R&D program at FNAL, CERN

- Dedicated CERN set-up for small-scale tests: 50 liters LAr-TPC
- Large-scale tests of anode and cathode+PD modules in dedicated “cold-box” at CERN by late 2021
Far Detector #2 (Vertical Drift)

Anode
- Charge Readout Planes from Dual Phase repurposed for VD
- Perforated PCB anode, fully immersed in LAr
- Reference: 3-view design plus shield (2 anodes)

50L test set-up
- 3-view anode: two 35 x 35 cm PCBs, overseeing a 50 cm drift volume.
- Very promising first data (cosmic μ's)
Far Detector #2 (Vertical Drift)

Photon Detection

- Based on X-ARAPUCA – “4π” reference design
- SiPM and electronics partially on Cathode: @ 300 kV
- Aggressive R&D program concerning Power-over-Fiber and Signal-over-Fiber technology
- Enhanced scintillation yield by doping with Xenon (tested in ProtoDUNE SP)
- High trigger efficiency down to 10 MeV

- 320 X-ARAPUCA 60 x 60 cm2 on cathode, analog readout
- 320 X-ARAPUCA 60 x 60 cm2 on cryostat membrane, ~3 m from cathode
 - Enhanced field cage transparency -> 70%

Back-up solution foresees fully instrumented membrane, with no detectors on cathode
 - No losses in physics requirements w.r.t. reference
Neutrino Reco/Identification

- Algorithms trained on Convolutional Neural Networks (CNN)
- Hit identification on 2D views and identification of distinct tracks/showers (clustering) with Pandora
 - 3D events produced from matching of 2D hits
- Neutrino event reconstruction from 2D images is the perfect input for machine learning / image analysis techniques
 - CNNs trained on, and aiming to classify, images (TPC views) -> Convoluted Visual Network (CVN)
 - 80-90% recognition efficiency for both ν_μ and ν_e
 - Low mis-identification rates

- ν_e CNN score (top)
- Resulting ν_e selection efficiency with top cut (left)

PRD 102 (2020), 9, 092003
Neutrino Oscillations

- Projected results for $\nu_\mu/\bar{\nu}_\mu$ disappearance and $\nu_e/\bar{\nu}_e$ appearance, assuming:
 - normal ordering
 - 7 staged years (3.5 y ν-beam mode + 3.5 y $\bar{\nu}$-beam mode)

- Measurement and simultaneous fit of oscillation parameters over the four components of FD data

- Sensitivity assessment includes full FD systematics treatment (flux, cross-section, and detector) and ND constraints

EPJC (2020) 80, 978
DUNE sensitivity

• Assumed staged running as in Technical Design Report (summing ν-beam mode and $\bar{\nu}$-beam mode)

• Potential of CP-violation (δ_{CP}) discovery in 7-10 years (left)

• 2-3 years to unambiguously determine mass hierarchy (NO vs IO, below)

\[\delta_{\text{CP}} = \begin{cases} 7 \text{ years (staged)} \\ 10 \text{ years (staged)} \\ 15 \text{ years (staged)} \end{cases} \]

EPJC (2020) 80, 978
Cosmic Neutrinos

- The DUNE FD will be sensitive to cosmic neutrinos from MeV to tens of GeV in energy
 - Stellar core-collapse supernova (SN) neutrinos
 - Solar neutrinos?
- For a **galactic SN**, DUNE expects to observe up to thousands of ν interactions over the duration of the burst
- High reconstruction efficiency for SN neutrino energy range, 15-20% expected energy resolution with both TPC and PDS

EPJC (2021) 81, 423

- **Solar neutrino** detection candidates:
 - from 8B, hep ($10 < \text{endpoint} < 20 \text{ MeV}$)
 - Background limited (detector materials)
 - Feasibility studies underway
BSM Physics

• DUNE can probe several sources of new physics
 - Sterile ν-mixing
 - Non-standard ν interactions
 - Barion number violation
 - Nucleon decay
 - Low-mass Dark Matter (@ ND)
 - (in-)elastic Boosted Dark Matter - BDM (@ FD)

 ... *EPJC (2021) 81, 322*
The past and the future – ProtoDUNE
The past and the future – ProtoDUNEs

- Two ~1 kton prototypes (6 x 6 x 6 m inner dimensions)
- Exposed to Very Low Energy (VLE) charged particle beams at CERN
- Validation of DUNE components design & installation, commissioning and performance study: **FULL-SCALE** prototypes
- **ProtoDUNE-Single Phase (HD)** operated 2018–2020
 - 4-month beam run in late 2018, then cosmics
 - Event reconstruction/identification training
 - R&D site: low-energy calibration (neutron gun), Xenon doping, Higher Voltage tests, …
 - Upcoming Phase-II on beam with HD updated design
- **ProtoDUNE-Dual Phase** operated 2019–2020
 - Development of CRP technology
 - Very High Voltage / large drift studies
 - Evolved into Vertical Drift -> Phase II

ProtoDUNE SP (HD) drift volume (3.6 m)
ProtoDUNE SP performance - I

HV / Cryo

- Very high stability of HV: > 99% up-time
- Purity well above minimal requirements (> 20 ms)

TPC

- > 99% of TPC channels (wires) alive
- SNR far larger than minimal requirements

- Purity and Space Charge corrections flow into calibration & energy reconstruction studies
- Particle tracking enhanced by external Cosmic Ray Tagger (CRT)
ProtoDUNE SP performance - II

Photon Detection System (PDS)

- 3 technologies based on light-guide modules with WLS (TPB or PTP) read by arrays of SiPM
- Calibration system based on pulsed LED light installed on the cathode
- ARAPUCA technology shows best results with 2% efficiency
- 1.9 phe/MeV light yield

JINST 15 (2020) 12, P12004
ProtoDUNE SP R&D – Xenon Doping

- Xenon doping of LAr considered for DUNE, to enhance PDS response
- Scintillation light shifted from 128 nm (Ar) to 178 nm (Xe)
 - Photon detectors have higher detection efficiency
 - Shorter pulses -> faster detector response
 - Larger Rayleigh Scattering length -> more uniform response in space (recovering light far from sensors)
- Dedicated studies in ProtoDUNE, with PDS and custom dedicated X-ARAPUCA detectors
 - First successful doping process of a very-large volume LAr-TPC
 - No effect on TPC response
 - Response independent of Drift Field
 - First test of X-ARAPUCA in a large-scale detector

- ~ 20 ppm of Xenon introduced in LAr (~13.5 kg)
- Demonstrated efficient energy transfer from Ar\(^*\)\(_2\) to Xe\(^*\)\(_2\)
- In ProtoDUNE SP, doping also helped recovering light loss due to N\(_2\) pollution (issue with recirculation pump)

Dedicated paper in preparation
Conclusions and Outlook

- DUNE: next-gen neutrino experiment, will allow precision neutrino physics measurements:
 - Oscillation parameters, mass hierarchy, CP violation
 - SN burst neutrinos
 - Possibility to probe several BSM channels (sterile ν's, Dark Matter, B violation)
- Beam Line & Near Detector Infrastructure designs under way
- Infrastructure at Far Detector site -> excavation is advancing
- Near Detector technology (multi-station) is defined
 - Design finalization in a few months
- Far detector technology defined for FD #1 (Horizontal Drift)
 - Design validation with “Module 0” in upcoming ProtoDUNE SP Run-II
- Vertical Drift LAr-TPC proposed for FD #2, aggressive R&D program at FNAL and CERN
 - Design validation in ProtoDUNE NP02 with proposed HV test in 2021 and later “Module 0”
Thank you!
Cryostat technology

- **Modular design** for transport into cavern
 - Scalability / Exact prototyping (ProtoDUNE)
- **Membrane cryostats**
 - ~ elastic, 1.2 mm thick stainless steel (SS) inner skin, accommodates cryogenic shrinking
 - used on LNG transport ships – mature technology; commercial partners
 - No need for vacuum -> argon purge
 - Leak tightness tested intensively on ProtoDUNE