The 28th International Workshop on Weak Interactions and Neutrinos (WIN2021)

Contribution ID: 248

Type: Asynchronous Talk

Latest results from the CUORE experiment

The Cryogenic Underground Observatory for Rare Events (CUORE) is the first bolometric experiment searching for $0\nu\beta\beta$ decay that has been able to reach the one-tonne mass scale. The detector, located at the LNGS in Italy, consists of an array of 988 TeO2 crystals arranged in a compact cylindrical structure of 19 towers. CUORE began its first physics data run in 2017 at a base temperature of about 10 mK and in April 2021 released its 3rd result of the search for $0\nu\beta\beta$, corresponding to a tonne-year of TeO2 exposure. This is the largest amount of data ever acquired with a solid state detector and the most sensitive measurement of $0\nu\beta\beta$ decay in 130Te ever conducted, with a median exclusion sensitivity of $2.8\times10^{\circ}25$ yr. We find no evidence of $0\nu\beta\beta$ decay and set a lower bound of $2.2\times10^{\circ}25$ yr at a 90% credibility interval on the 130Te half-life for this process. In this talk, we present the current status of CUORE search for $0\nu\beta\beta$ with the updated statistics of one tonne-yr. We finally give an update of the CUORE background model and the measurement of the 130Te $2\nu\beta\beta$ decay half-life, study performed using an exposure of 300.7 kg·yr.

Primary authors: CUORE COLL.; HUANG, Roger (UC Berkeley)

Presenter: HUANG, Roger (UC Berkeley)

Session Classification: Neutrino Physics Session 2

Track Classification: Neutrino Physics