

#### Introduction & Background

Neutrino nucleus scattering will soon require percent level input for neutrino nucleus cross sections.

QED effects can be enhanced by large nuclear charges. Rather than having  $\alpha$  as a small parameter, corrections are controlled by  $Z\alpha$ .

These effects influence charged leptons that are produced in neutrino scattering on nuclei. Corrections can depend on the lepton mass and are therefore flavour dependent.

#### Our goal is to understand if/when Coulomb corrections can be factorized from nuclear physics effects.

#### Distorted Wave Calculation



Consider toy model of a nucleus with a bound proton in the initial state.

Perturbative treatment expands in  $Z\alpha$  by including background field diagramatically.





Incorporate bacgkround field effect to all orders in  $Z\alpha$  by using **distorted waves** that solve the Dirac equation with a background field.

## Coulomb corrections for charged current scattering on nuclei Ryan Plestid, Oleksandr Tomalak, & Richard J. Hill Department of Physics & Astronomy, UKY | Theoretical Physics Department, FNAL



-N

Eikonal Expansion in a Lightcone Basis Suppose massless fermion with  $E \gg V$  and introduce lightlike vectors

$$n^2 = 0$$
 ,  $\bar{n}^2 =$ 

Dirac equation in lightcone coordinates (see SCET literature)

$$\begin{bmatrix} i(n \cdot \partial) - i\partial_{\perp} \\ i\bar{n} \cdot \partial \end{bmatrix}$$

Solve wth Eikonal ansatz order by order in V/E

 $\mathscr{U}_{\mathbf{p}}(x) = e^{iEn \cdot x} e^{i\chi(x)} \times u_{\mathbf{p}}$  $\chi(x) = \chi_0(x) + \frac{1}{E}\chi_1(x) + \dots$ 

Solve wth Eikonal ansatz order by order in V/E

See also

Yennie, Boos, Ravenhall, Physical Review 137 (1965)
Tjon & Wallace, Physical Review C 74 (2006)
J. Engel, Physical Review C 54 (1998)

## Power Counting for Matrix Elements

We would like a reliable method to predict how different terms in the eikonal expansion contribute to matrix elements order by order in 1/E.

Different orders in the eikonal expansion "mix" when computing matrix distorted wave matrix elements. due to **rapidly oscillating phase.** 

 $d^3x \exp i\chi_0(x) + \frac{1}{E}\chi_1(x) + \dots$ 

generalization of the Reimann-Lebesque lemma

 $dz z^n e^{i\xi z} \sim O(1/E^{n+1})$ 

## 0 , $\bar{n} \cdot n = 2$

 $\frac{1}{2} - V \mathbf{i} \mathbf{\delta}_{\perp} | \mathcal{U}_{\mathbf{p}}(x) = 0$ 

e<sup>iQ·x</sup>

**Solution:** Taylor expand eikonal phases and count  $x^n \sim O(1/E^n)$  by a

## Modified Effective Momentum Approximation

Phenomenological ansatz introduced by Engel can derived systematically justified via matrix element power counting.



2. Focusing factor

## Transverse Momentum Fluctuations

Working to higher order in I/E we find Gaussian integrals that lead to fluctuations in the lepton's transverse momentum.

Controlled by ``inverse moments'' of charge distribution

Controllable high-energy expansion valid for large  $Z\alpha$ .

Developed within a systematic and improvable framework.

Phenomenological applications ongoing. Papers coming soon.



Retain the following terms

- . First derivative of  $\chi_0(x)$ . evaluated at the origin.
- 2. Imaginary part of  $\chi_1(x)$ evaluated at the origin.

# I. Effective momentum $k \to k_{eff} = k + [\partial_7 \chi_0](0)$

# $u_p \rightarrow e^{-\text{Im}\chi_1(0)/E} \times u_n$

 $\langle k_{\perp}^2 \rangle \sim Z \alpha \langle r^{-2} \rangle$ 

 $\langle r^{-2} \rangle = | d^3x \rho_Z(x) r^{-2} \rangle$ 

#### Conclusions

This work was supported by the DOE, under Award Number DE-SC0019095. R.P. was supported by funds from the Intensity Frontier Fellowship at Fermilab. O.T. is supported by the Visiting Scholars Award Program of the URA.



rpl225@uky.edu