

Identification and Reconstruction of Michel Electrons in ProtoDUNE-SP

Aleena Rafique On behalf of the DUNE Collaboration The 28th International Workshop on Weak Interactions and Neutrinos (WIN 2021)

1. Motivations

- ➤ Key demonstration for DUNE electron selection and energy reconstruction and to demonstrate DUNE far detector capability to identify and reconstruct low-energy electron events.
- ➤ The analysis is important to show that ProtoDUNE can use the topological / calorimetric information provided by the TPC to identify a specific topology.

2. DUNE/ProtoDUNE Experiment

DUNE:

- 1300 km baseline
- 70 kton Liquid Argon Time Projection Chamber (LArTPC) Far Detector (FD) at SURF, South Dakota, 1.5 km underground
- Multiple technologies for the Near Detector (ND) at Fermilab
- Will measure neutrino oscillation probability to determine mass ordering and CP violation phase; potential for BSM physics and supernova neutrinos

ProtoDUNE-single phase:

- ~6×6×7 m³ in charged test beam at CERN
- A crucial part of the DUNE effort towards the construction of the first DUNE far detector module
- ProtoDUNE-SP I operated from September 2018 to July 2020

Fermilab **SURF**

3. Event Selection

4. Michel Reconstruction

5. Missing Reconstructed Energy

- ➤ ~35% of Michel true energy is missing
- ➤ Some of the true Michel hits are not getting reconstructed
- Computed the average missing energy per event
- ➤ All low energy analyses will get impacted by this effect

6. Updated MC Michel Energy Resolution

- ➤ Compared MC reconstructable energy resolution plots before and after the addition of the MC missing energy per event
- ➤ Energy resolution:
 - -- Before: $\delta(E)/E = 26\%$ at 50 MeV
 - -- After: $\delta(E)/E = 18\%$ at 50 MeV

7. Michel Reconstructed Energy

➤ Accuracy of the reconstructed Michel energy spectrum > 98%

8. Conclusions and Future Direction

- ➤ Developed Michel selection, reconstruction, and energy calibration tools important for DUNE LArTPCs.
 - -- Achieved 96% event purity
 - -- Michel electron energy accuracy is >98%
- ➤ Working on lowering the hit reconstruction thresholds to retrieve as much energy as possible
- ➤ Michel analysis in ProtoDUNE-SP paper is in progress

