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Abstract

1 Tri-bimaximal mixing pattern in the neutrino sector has been
explained by certain Yukawa coupling structure in the model of
constrained sequential dominance (CSD). We propose a
phenomenological model by modifying the CSD Yukawa coupling
structure.

2 Essentially we add small complex parameters to CSD Yukawa
structure and demonstrate that neutrino mixing angles deviate from
the TBM pattern.

3 We compute numerical values of the small complex parameters in
our analysis and we also construct a model based on flavor
symmetry and flavon fields in order to justify our Yukawa coupling
structure.

Sequential Dominance and CSD
Assuming the charged lepton mass matrix to be diagonal, we add three
right handed neutrinos νatmR , νsolR and νdecR to the Standard Model. Yukawa
Lagrangian for neutrino mass is
LY uk = (Hu

vu
)(dLe + eLµ + fLτ)νatmR + (Hu

vu
)(aLe + bLµ + cLτ)νsolR (1)

+(Hu

vu
)(a′Le + b′Lµ + c′Lτ)νdecR + H.c.

Majorana Lagrangian is given by
LMν = MsolνsolR (νsolR )c + MatmνatmR (νatmR )c + MdecνdecR (νdecR )c. (2)

So,

MR =



Matm 0 0
0 Msol 0
0 0 Mdec

 , mD =



d a a′

e b b′

f c c′

 ,

mν = mDM
−1
R mT

D. (3)

Matm �Msol �Mdec,
(e, f )2

Matm
� (a, b, c)2

Msol
� (a′, b′, c′)2

Mdec
. (4)

• Third column of mD and mR can be decoupled with the above
conditions.
• Three right handed neutrino model =⇒ Two right handed neutrino
model.
•mD and MR take the form

MR =

Matm 0

0 Msol

 , mD =



d a
e b
f c



d = 0, e = f, , a = b = −c. (5)
After performing above mentioned decoupling and above condition, Dirac
and Majorana mass matrices take the form

mD =



0 a
e a
e −a

 , MR =

Matm 0

0 Msol

 . (6)

Putting this mD and MR in mν of Eq.(4), we find

UT
TBMmνUTBM =



0 0 0

0 3a2

Msol
0

0 0 2e2

Matm


., UTBM =



√
2
3

1√
4 0

− 1√
6

1√
3

1√
2

1√
6 −

1√
3

1√
2


(7)

From the unitary matrix UTBM one can extract the three neutrino mixing
angles and we can see that they have the TBM values.

Our Model and deviation from TBM pattern
We consider a phenomenological model where we modified the Dirac mass
matrix as

m′D = mD + ∆mD, mD =



0 a
e a
e −a

 , ∆mD =



eε1 aε4
eε2 aε5
eε3 aε6

 , (8)

Here εi, i=1..6 are complex parameters. Hence the seesaw formula for active
neutrinos

ms
ν = m′DM

−1
R (m′D)T (9)

since we are in a basis where charged leptons are diagonalized, this form
of mass matrix should be diagonalized by PMNS matrix which in terms of
PDG convention is

UPMNS =



c12c13 s12c13 s13e
−iδCP

−s12c23 − c12s23s13e
iδCP c12c23 − s12s23s13e

iδCP s23c13
s12s23 − c12c23s13e

iδCP −c12s23 − s12c23s13e
iδCP c23c13


(10)

Here cij = cos θij and sij = sin θij. In order to simplify our calculations we
parameterize s12 and s23 as

s12 = 1√
3

(1 + r), s23 = 1√
2

(1 + s) (11)

So, if we allow non-zero εi in our model, we can get non-zero r, s, s13.
The relation for diagonalization of the seesaw mass matrix is

md
ν = UT

PMNSm
s
νUPMNS = diag(m1,m2,m3) (12)

In the limit where εi, r, s and s13 tends to zero, we get the leading order
expressions for neutrino masses.

m1 = 0, m2 = 3a2

Msol
,m3 = 2e2

Matm
. (13)

Here up to leading order m1 is zero. As a result of this we can have only
normal hierarchy of neutrino masses. So, we can fit m2 and m3 to be square
root of solar (

√
∆m2

sol) and atmospheric (
√
∆m2

atm) mass squared differences.
We expect the following order of estimation

a2

Msol
∼

√
∆m2

sol,
e2

Matm
∼

√
∆m2

atm (14)

First Order Correction

From the neutrino oscillation data one can notice that
√√√√√ ∆m2

sol
∆m2

atm
= s13. This would

imply m2/m3 = s13 in our model. To incorporate this order of estimation we
reexpress our diagonalization formula as

1√
∆m2

atm
md
ν ≡

1√
∆m2

atm
UT

PMNSm
s
νUPMNS = diag( m1√

∆m2
atm
,

m2√
∆m2

atm
,

m3√
∆m2

atm
) (15)

Up to first order in εi, ms
ν can be expanded as

ms
ν = ms

ν(0) + ms
ν(1), (16)

ms
ν(0) = mDM

−1
R mT

D, ms
ν(1) = mDM

−1
R (∆mD)T + ∆mDM

−1
R mT

D

Similarly, up to first order in r, s and s13, the expansion for UPMNS is
UPMNS = UTBM + ∆U, (17)

∆U =



− r√
6

r√
3 e−iδCPs13

−r+s√
6 −

eiδCPs13√
3 −r+2s+

√
2eiδCPs13

2
√

3
s√
2

r+s√
6 −

eiδCPs13√
3

r−2s−
√

2eiδCPs13
2
√

3 − s√
2



Terms up to first order in 1√
∆m2

atm
md
ν are given below.

1√
∆m2

atm
md
ν = 1√

∆m2
atm

(
md
ν(0) + md

ν(1)
)
,

md
ν(0) =



0 0 0
0 3a2

Msol
0

0 0 2e2

Matm


, md

ν(1) =



x′11 x
′
12 x

′
13

x′12 x
′
22 x

′
23

x′13 x
′
23 x

′
33

 ,

x′11 = 0, x′12 = 0, x′13 = e2
√

6Matm
[
√

2(2ε1 − ε2 + ε3 + 2s)− 4eiδCPs13], x′22 = 0,

x′23 = e2
√

3Matm
[
√

2(ε1 + ε2 − ε3 − 2s)− 2eiδCPs13], x′33 = 2e2

Matm
.(ε2 + ε3) (18)

Now, equating the diagonal elements on both sides of Eq. (15), we get the expres-
sions for the three neutrino masses, which are given below

m1 = 0, m2 = 3a2

Msol
, m3 = 2e2

Matm
+ 2e2(ε2 + ε3)

Matm
(19)

From the above equations we can see that only m3 get correction at the first or-
der level. Now, from the off-diagonal elements of Eq. (15), we get the following
expressions.

ε1 =
√

2eiδCPs13, ε2 − ε3 = 2s (20)

Second Order Correction
Expansion for ms

ν and UPMNS, up to second order in εi, r, s and s13 are given below
ms
ν = ms

ν(0) + ms
ν(1) + ms

ν(2), ms
ν(2) = ∆mDM

−1
R (∆mD)T , (21)

UPMNS = UTBM + ∆U + ∆2U,

∆2U =



−3r2+4s2
13

4
√

6 − s2
13

2
√

3 0
√

2(rs+s2)+(r−2s)s13e
iδCP

2
√

3
−3r2+4rs−8s2−4

√
2(r+s)s13e

iδCP

8
√

3 − s2
13

2
√

2√
2rs+(r+2s)s13e

iδCP

2
√

3
3r2+4rs−4

√
2(r−s)s13e

iδCP

8
√

3 −2s2+s2
13

2
√

2



1√
∆m2

atm
md
ν can be computed up to second order in εi, r, s, s13 and

√√√√√ ∆m2
sol

∆m2
atm
. Now,

after using Eq.(20), the second order terms in 1√
∆m2

atm
md
ν will be simplified. These

are given below.

1√
∆m2

atm
md
ν(2) = 1√

∆m2
atm



x′′11 x
′′
12 x

′′
13

x′′12 x
′′
22 x

′′
23

x′′13 x
′′
23 x

′′
33

 ,

x′′11 = 0, x′′12 = a2
√

2Msol
(2ε4 − ε5 + ε6 − 3r),

x′′13 = e2
√

3Matm
[s(3s− 2

√
2eiδCPs13) + 2ε3(s−

√
2eiδCPs13)],

x′′22 = 2a2

Msol
(ε4 + ε5 − ε6),

x′′23 =
√

3a2

2Msol
[
√

2(ε5 + ε6 + 2s) + 2e−iδCPs13]

− e2
√

3Matm
[2ε3(
√

2s + eiδCPs13) + s(3
√

2s + 2eiδCPs13)],

x′′33 = 2e2

Matm
(ε2

3 + 2ε3s + 2s2 + s2
13) (22)

Now, after equating the diagonal elements on both sides of Eq. (15), we get correc-
tions up to second order to neutrino masses, which are given below.

m1 = 0, m2 = 3a2

Msol
+ 2a2

Msol
(ε4 + ε5 − ε6),

m3 = 2e2

Matm
+ 4e2

Matm
(ε3 + s) + 2e2

Matm
(s2

13 + ε2
3 + 2ε3s + 2s2) (23)

After demanding that the off-diagonal elements of 1√
∆m2

atm
md
ν should be zero, we

get the following three relations.
2ε4 − ε5 + ε6 = 3r,
s(3s− 2

√
2eiδCPs13) + 2ε3(s−

√
2eiδCPs13) = 0,√√√√√√√√√

∆m2
sol

∆m2
atm
eiφ[
√

2(ε5 + ε6 + 2s) + 2e−iδCPs13]

−[2ε3(
√

2s + eiδCPs13) + s(3
√

2s + 2eiδCPs13)] = 0. (24)

Numerical Results
Since εi are complex, we have resolved them in to real and imaginary parts, whose
expressions are given below.

εi = Re(εi) + iIm(εi). (25)
In order to be compatible with neutrino oscillation observables, we have obtained
the allowed ranges for Re(εi) and Im(εi). These results are given in Table 1.

Re(ε1) Im(ε1) Re(ε2) Im(ε2), Im(ε3) Re(ε3)
(−0.221, 0.221) (−0.221, 0.182) (−0.106, 0.225) (−0.064, 0.064) (−0.15, 0.095)
φ ε4 Re(ε5) Im(ε5) Re(ε6) Im(ε6)
0 0.1 (−0.084, 0.462) (−0.119, 0.101) (−0.375, 0.168) (−0.119, 0.101)
0 −0.1 (−0.282, 0.26) (−0.119, 0.101) (−0.175, 0.367) (−0.119, 0.101)
0 0.1i (−0.182, 0.362) (−0.019, 0.199) (−0.275, 0.267) (−0.219, 0.001)
0 −0.1i (−0.182, 0.362) (−0.219, 0.001) (−0.275, 0.267) (−0.019, 0.199)
Table 1:Allowed ranges for the real and imaginary parts of the εi parameters.

The maximum values of |Re(ε5)| and |Re(ε6)|can be around 0.4
depending on ε4 and φ values. For this reason we have computed
allowed values for neutrino mixing angles and δCP by restricting |Re(ε5)|
and |Re(ε6)| to be less than 0.23 for the case of φ = 0 and ε4 = 0.1.
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Figure 1:Allowed regions in neutrino mixing angles and δCP by demanding |Re(ε5)| and
|Re(ε6)| to be less than 0.23, for the case of φ = 0 and ε4 = 0.1. δCP is expressed in
degrees.

A model for our Dirac Mass mixing
Here we construct a model in order to justify our Dirac mass matrix
and also to explain the smallness of εi. In Table 2, charges assignments
of the fields, which are relevant to neutrino sector, are given.

φa φs φ
′
a φ′s ξ χa χs ν

atm
R νsolR L H

SU(3) 3 3 3 3 1 1 1 1 1 3 1
Z3 ω ω2 ω ω2 1 ω2 ω ω2 ω 1 1
Z ′3 ω2 ω2 ω ω ω ω ω ω ω 1 1

Table 2:Charge assignments of the relevant fields under the flavor symmetry SU(3)×
Z3 × Z ′3 are given. Here, ω = e2πi/3. For other details, see the text.

With these charge assignments, the leading terms in the Lagrangian
are

L = φa
MP

L̄νatmR H + φs
MP

L̄νsolR H + ξ

MP

φ′a
MP

L̄νatmR H + ξ

MP

φ′s
MP

L̄νsolR H

+χa
2

(νatmR )cνatmR + χs
2

(νsolR )cνsolR + h.c. (26)

Here, MP ∼ 2 × 1018 GeV is the reduced Planck scale, which is the
cutoff scale for this model. In order to explain the structure of Dirac
mass matrix of CSD, we assume that these vevs to have the following
pattern

〈φa〉
MP

= ya



0
1
1

 ,
〈φs〉
MP

= ys



1
1
−1

 (27)

Here, ya, ys are dimensionless quantities. The vevs of φ′a, φ′s, ξ give sub-
leading contribution to Yukawa couplings for neutrinos. Here, we need
not assume any pattern for the vevs of φ′a, φ′s. Hence, after writing
〈ξ〉
MP

= ε, we can have

〈ξ〉
MP

〈φ′a〉
MP

= ya



y1
y2
y3

 ε = ya



ε1
ε2
ε3

 ,
〈ξ〉
MP

〈φ′s〉
MP

= ys



y′1
y′2
y′3

 ε = ys



ε4
ε5
ε6


(28)

Here, yi, y′i, where i = 1, · · · , 3, are O(1) parameters. The vevs of
χa and χs generate Majorana masses. Scalar vevs are found to be
〈χa〉, 〈χs〉 ∼ 1 TeV, 〈ξ〉 ∼ 1017 GeV, 〈φa〉, 〈φs〉, 〈φ′a〉, 〈φ′s〉 ∼ 1012

GeV.
There is a large hierarchy among these vevs. We can achieve this
hierarchy, in this model, by appropriately fixing the relevant parameters
in the scalar potential among the above mentioned scalar fields.

Conclusion

• In this work we have attempted to explain the neutrino mixing in
order to explain neutrino oscillation data.
• Here we have considered a model where we have modified the
Yukawa couplings of CSD model by introducing small εi
parameters.
• Thereafter we followed an approximation procedure in order to
diagonalize the seesaw formula and we have computed expressions
up to second order level to neutrino mass and mixing angles in
terms of small εi parameters.
• Using these expressions we have demonstrated that neutrino mixing
can deviate from TBM pattern by choosing εi parameters.
• Finally we have constructed a model in order to justify the neutrino
Yukawa coupling structure of our model.
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