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Abstract

o Tri-bimaximal mixing pattern in the neutrino sector has been
explained by certain Yukawa coupling structure in the model of
constrained sequential dominance (CSD). We propose a
phenomenological model by modifying the CSD Yukawa coupling
structure.

® Essentially we add small complex parameters to CSD Yukawa

structure and demonstrate that neutrino mixing angles deviate from
the TBM pattern.

® We compute numerical values of the small complex parameters in
our analysis and we also construct a model based on flavor
symmetry and flavon fields in order to justify our Yukawa coupling
structure.

Sequential Dominance and CSD

Assuming the charged lepton mass matrix to be diagonal, we add three
atm ,sol

right handed neutrinos v#™, v and v to the Standard Model. Yukawa
Lagrangian for neutrino mass is
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Majorana Lagrangian is given by
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e Third column of mp and mpg can be decoupled with the above
conditions.

e Three right handed neutrino model = Two right handed neutrino
model.

e mp and Mp take the form
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After performing above mentioned decoupling and above condition, Dirac
and Majorana mass matrices take the form
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From the unitary matrix Urg,s one can extract the three neutrino mixing
angles and we can see that they have the TBM values.

Our Model and deviation from TBM pattern

We consider a phenomenological model where we modified the Dirac mass

matrix as
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Here €;, i=1..6 are complex parameters. Hence the seesaw formula for active
neutrinos

m;, = mpMpg' (mp)" (9)

since we are in a basis where charged leptons are diagonalized, this form
of mass matrix should be diagonalized by PMNS matrix which in terms of
PDG convention is
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Here ¢;; = cos0;; and s;; = sin0;;. In order to simplify our calculations we
parameterize s and So3 as

S19 = \}5(1 + T), S93 = \}5(1 + S) (11)

So, it we allow non-zero €; in our model, we can get non-zero r, s, $3.
The relation for diagonalization of the seesaw mass matrix is

m? = UbyvsmiUpnins = diag(my, mo, ms) (12)

In the limit where ¢€;, 1, s and s13 tends to zero, we get the leading order
expressions for neutrino masses.
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Here up to leading order m; is zero. As a result of this we can have only
normal hierarchy of neutrino masses. So, we can fit ms and ms to be square

root of solar ({Am?,) and atmospheric (,/Am?
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We expect the following order of estimation
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) mass squared differences.
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First Order Correction

From the neutrino oscillation data one can notice that AAﬂTfol = sy3. This would

atm

imply ms/m3 = s13 in our model. To incorporate this order of estimation we
reexpress our diagonalization formula as
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Up to first order in €;, m; can be expanded as
m, = My + My, (16)
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Similarly, up to first order in 7, s and s;3, the expansion for Upyng is

Upvins = Urpu + AU, (17)
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Terms up to first order in \/:ng are given below.
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Now, equating the diagonal elements on both sides of Eq. (15), we get the expres-
sions for the three neutrino masses, which are given below
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From the above equations we can see that only mg get correction at the first or-

der level. Now, from the off-diagonal elements of Eq. (15), we get the following

my = O, o — (19)
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Second Order Correction

Fxpansion for mJ and Upying, up to second order in €;, 7, s and s;3 are given below
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\/im can be computed up to second order in €;, 7, s, s13 and | T 5. Now
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after using Eq.(20), the second order terms in \/:Tmy will be simplified. These

are given below.
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Now, after equating the diagonal elements on both sides of Eq. (15), we get correc-
tions up to second order to neutrino masses, which are given below.
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After demanding that the off-diagonal elements of m? should be zero, we
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get the following three relations.
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Numerical Results

Since €; are complex, we have resolved them in to real and imaginary parts, whose
expressions are given below.

= Re(€;) +i1Im(e;). (25)

In order to be compatible with neutrino oscillation observables, we have obtained
the allowed ranges for Re(e¢;) and Im(¢;). These results are given in Table 1.

R6(€1> Im(€1> R6(€2> Im(@), Im<€3> R€<€3)
(—0.221,0.221) | (—0.221,0.182) | (—0.106,0.225) | (—0.064, 0.064) | (—0.15,0.095)

O ey Re(es) Im(es) Re(eg) Im(eg)

0] 0.1 | (—0.084,0.462) | (—0.119,0.101) | (—0.375,0.168) | (—0.119,0.101)

0 —0.1 | (—0.282,0.26) | (—0.119,0.101) | (—0.175,0.367) | (—0.119,0.101)

0| 0.17 | (—0.182,0.362) | (—0.019,0.199) | (—0.275,0.267) | (—0.219,0.001)

0] —0.17 | (—0.182,0.362) | (—0.219,0.001) | (—0.275,0.267) | (—0.019, 0.199)

Table 1:Allowed ranges for the real and imaginary parts of the €; parameters.
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The maximum values of |Re(e5)| and |Re(€s)|can be around 0.4
depending on ¢, and ¢ values. For this reason we have computed
allowed values for neutrino mixing angles and dcp by restricting |Re(e5)]
and |Re(¢s)| to be less than 0.23 for the case of ¢ =0 and ¢4 = 0.1.
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Figure 1:Allowed regions in neutrino mixing angles and dcp by demanding | Re(e;)| and
| Re(eg)| to be less than 0.23, for the case of ¢ = 0 and €4 = 0.1. Jcp is expressed in

degrees.

A model for our Dirac Mass mixing

Here we construct a model in order to justify our Dirac mass matrix
and also to explain the smallness of ¢;. In Table 2, charges assignments
of the fields, which are relevant to neutrino sector, are given.
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Table 2:Charge assignments of the relevant fields under the flavor symmetry SU(3) x

Z3 X Zj are given. Here, w = e2™/3 For other details, see the text.

With these charge assignments, the leading terms in the Lagrangian
are
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Here, Mp ~ 2 x 10'® GeV is the reduced Planck scale, which is the
cutofl scale for this model. In order to explain the structure of Dirac
mass matrix of CSD, we assume that these vevs to have the following

pattern
1

1 (27)
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Here, y,, ys are dimensionless quantities. The vevs of ¢/, ¢., & give sub-
leading contribution to Yukawa couplings for neutrinos. Here, we need
not assume any pattern for the vevs of @/, ¢.. Hence, after writing
&) €, we can have
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/
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Here, y;, yi, where ¢ = 1,--- 3, are O(1) parameters. The vevs of
Yo and Y generate Majorana masses. Scalar vevs are found to be
<Xa>7<Xs> ~ 1 1eV, <§> ~ 10" GeV, <¢a>7<¢8>7<¢;>7<¢;> ~ 10"
GeV.

There is a large hierarchy among these vevs. We can achieve this
hierarchy, in this model, by appropriately fixing the relevant parameters
in the scalar potential among the above mentioned scalar fields.

Conclusion

e In this work we have attempted to explain the neutrino mixing in
order to explain neutrino oscillation data.

e Here we have considered a model where we have modified the
Yukawa couplings of CSD model by introducing small ¢;
parameters.

e Thereafter we followed an approximation procedure in order to
diagonalize the seesaw formula and we have computed expressions
up to second order level to neutrino mass and mixing angles in
terms of small €; parameters.

e Using these expressions we have demonstrated that neutrino mixing
can deviate from TBM pattern by choosing €; parameters.

e Finally we have constructed a model in order to justity the neutrino
Yukawa coupling structure of our model.
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