

Thermal performance of the multilayer insulation systems for cryogenic applications

D. Singh¹, M. K. Singh^{1,2}, V. Singh^{1,3}

¹ Nuclear Physics Section, Department of Physics, Institute of Science, Banaras Hindu University, Varanasi –221005. ² Institute of Physics, Academia Sinica, Taipei 11529, Taiwan.

³ Physics Department, School of Physical and Chemical Sciences, Central University of South Bihar, Gaya 824236, India.

E-mail: damini.singh13@bhu.ac.in

1. Introduction

2. Exchange of Heat and Formulation

Cryostat: A double walled container

A filled with cryogenic liquid

▲ provide thermal insulation

Multilayer Insulation (MLI) technique: composed

of radiation shields and low conductivity spacers

MLI reduces radiation heat load by multiple

1		Solid conduction
	ary	Residual gas conduction
	pun	Thermal radiation
	ll bo	Thermal radiation is major part
	wall	MLI Technique reduces radiation heat lo
	Cold	Heat load without inserting any layer
		$\sigma A_2(T_1^4 - T_2^4)$

reflection of incident radiation

Spacers **Radiation Shields**

- **Radiation shield: Polished with highly reflecting metals for reflection**
- To ignore solid conduction: Spacers are placed in between the radiation shields

S.No.	Materials	Constants		
		CR	\mathbf{CS}	CG
1	Unperforated DAM with Silk-Net	5.39×10^{-10}	8.95×10^{-8}	1.46×10^{-4}
2	Perforated DAM with Glass-Tissue	7.07×10^{-10}	$7.30{ imes}10^{-8}$	1.46×10^{-4}
3	Perforated DAM with Dacron	4.94×10^{-10}		1.46×10^{-4}

Why we study a

Cryostat is used to offer the mechanical housing, shielding and cooling to the device under observation and the reliable functioning of a device requires minimum heat load.

 $\sigma A_2(T_1^4 - T_2^4)$ $q_{1-2} =$ $1-\varepsilon_1$ $rac{A_2}{A_1}$

MLI Technique reduces radiation heat load

Hot boundary wall

 $(\mathbf{A}_1, \mathbf{T}_1, \mathbf{\varepsilon}_1)$

Third layer

 $(A_{v}, T_{v}, \varepsilon_{v})$

Cold boundary wall

 $(\mathbf{A}_2, \mathbf{T}_2, \mathbf{\varepsilon}_2)$

(A,, T,, E,

Hot boundary wall

 $(\mathbf{A}_1, \mathbf{T}_1, \mathbf{\varepsilon}_1)$

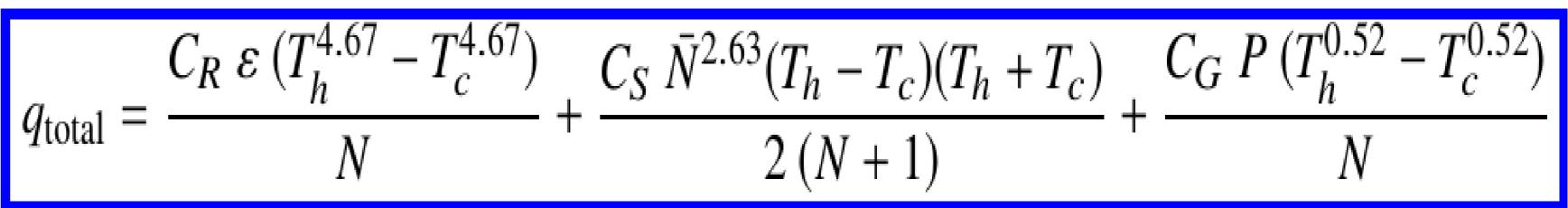
Third layer

 $(A_3, T_3, \varepsilon_3)$

(a)

2021

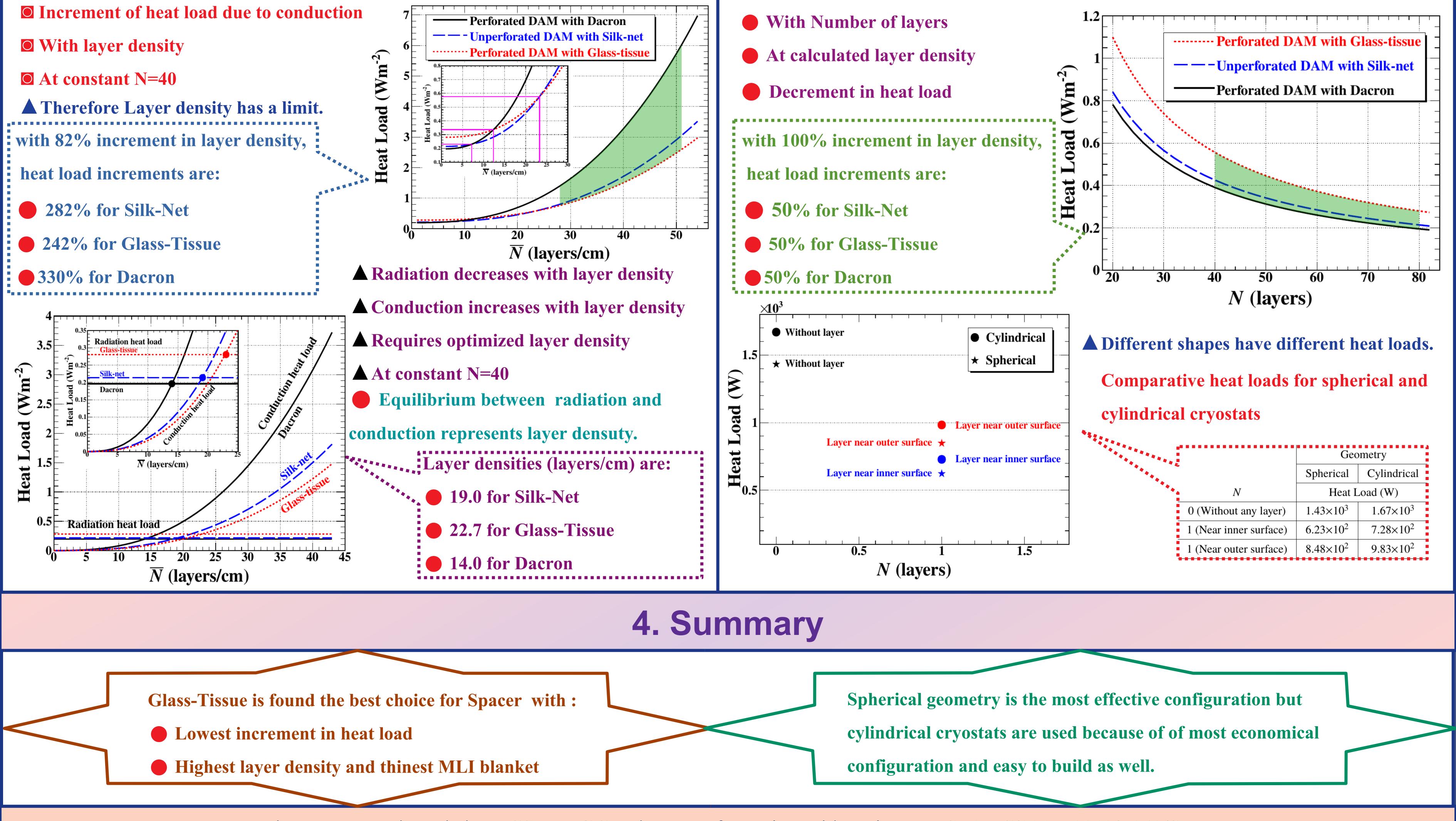
 $(\mathbf{A}_1, \mathbf{T}_1, \mathbf{\varepsilon}_1)$

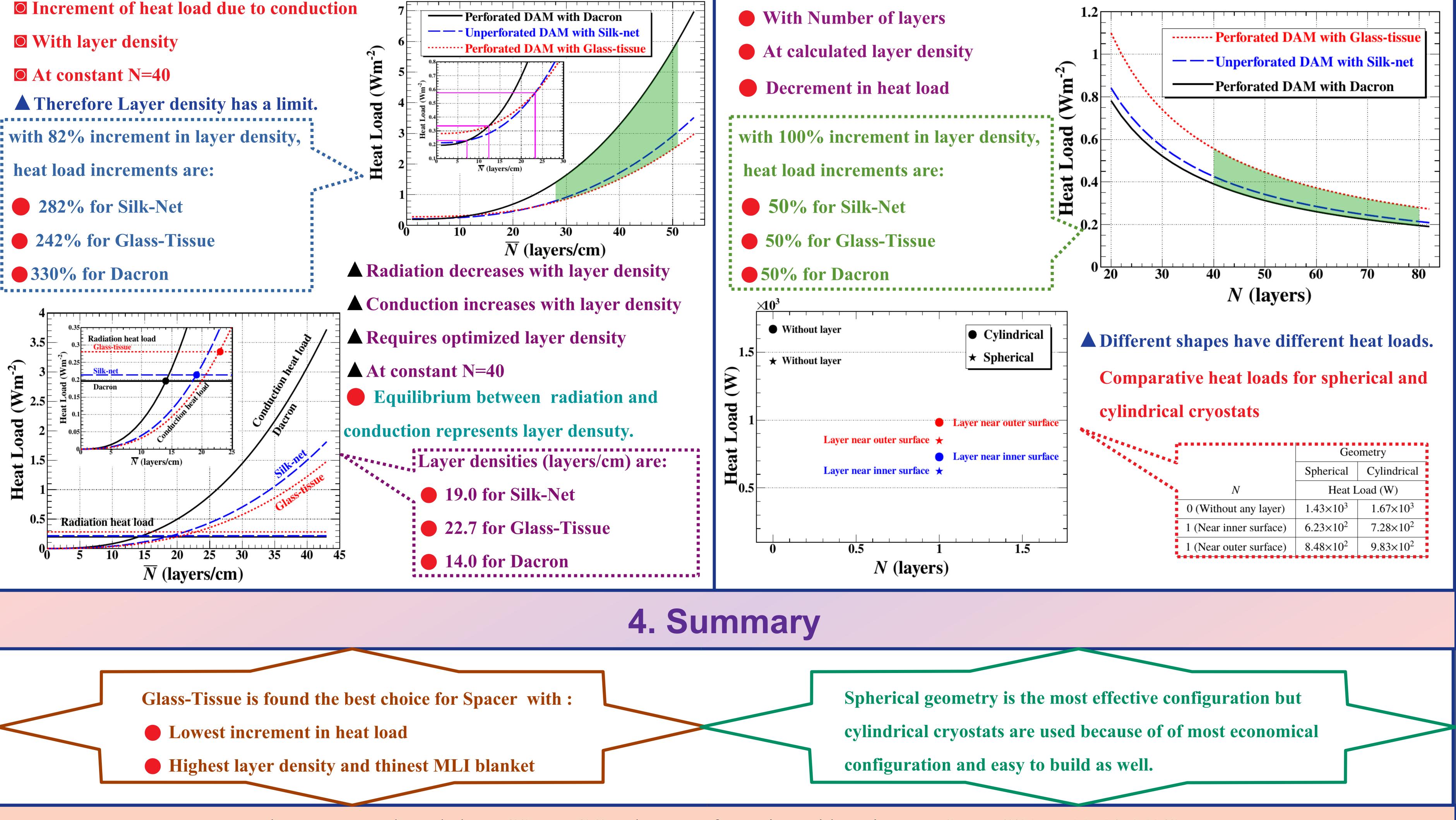

Third layer

 $(A_3, T_3, \varepsilon_3)$

Heat load with inserting a single $q_{1-2} =$ layer

$$\frac{\sigma A_2 (T_1^4 - T_2^4)}{\frac{1}{\varepsilon_2} + \left(\frac{1}{\varepsilon_1} - 1\right) \frac{A_2}{A_1} + 2\left(\frac{1}{\varepsilon_3} - 1\right) \frac{A_2}{A_3} + \frac{A_2}{A_3}}$$


Modified Lockheed Equation for Silk net and Glass tissue



Modified Lockheed Equation for Dacron

$$\begin{split} q_{\text{total}} &= \left(\frac{2.4 \times 10^{-4} (0.017 + 7 \times 10^{-6} \left(800 - T\right) + 0.0228 \, ln(T)\right) \, \bar{N}^{2.63} (T_h - T_c)}{N} \right) \\ &+ \left(\frac{C_R \, \varepsilon \left(T_h^{4.67} - T_c^{4.67}\right)}{N}\right) + \left(\frac{C_G \, P \left(T_h^{0.52} - T_c^{0.52}\right)}{N}\right) \end{split}$$

3. Analysis and Results

The presenter acknowledges CSIR-UGC and MHRD for project with project No. SPARC/2018–2019/P242/SL

References:

1. D. Singh et al., "Heat radiation reduction in cryostats with multilayer insulation technique", JINST, 15, P07032 (2020)

2. V. Parma, Cryostat Design, CERN Yellow Report CERN-2014-005 (2013) 353 [arXiv:1501.07154].

3. J. G. Weisend II, Cryostat Design: Case Studies, Principles and Engineering, Springer (2016).

The 28th International Workshop on Weak Interactions and Neutrinos (WIN2021) **Department of Physics, Institute of Science, Banaras Hindu University, Varanasi-221005**