

oscillation experiment. Its physics program includes:

Mass	FHC	RHC
511 t	68.9	36.6
100 t	13.5	7.2
8.2 t	1.1	0.59
5.5 t	0.74	0.39
619.2 t	83.5	44.39
	Mass511 t100 t8.2 t5.5 t619.2 t	MassFHC511 t68.9100 t13.58.2 t1.15.5 t0.74619.2 t83.5

Simulated v_{μ} , \bar{v}_{μ} , v_{e} , \bar{v}_{e} interactions using GENIE and Geant4.

 $7.6 \times 10^6 v_{\mu}$ CC interaction in FHC mode $4.9 \times 10^6 \,\overline{\nu}_{\mu}$ CC interaction in RHC mode

In ECAL, STT + LAr target and magnet

The System for on-Axis Neutrino Detection of the DUNE Near Detector complex

Valerio Pia on behalf of the DUNE Collaboration INFN and University of Bologna

	$\bar{\nu}_{\mu} \ p o \mu$	External events		
Selection	Primary neutron ε (%)	Secondary neutron ε (%)	ε (%)	
No cut	100	100	100	
$-2 < \Delta t < 300 \text{ ns}$	81	33	0.6	
NN cut	85.4	8.5	6.0	

Beam Monitoring with SAND

Continuous monitoring of the neutrino beam is needed to detect potential variations over time affecting the FD oscillation analysis.

The beam is monitored by measuring the momentum and energy distributions of particles produced in v_{μ} CC interactions.

The goal is to monitor the beam spectrum, profile, and event rate in a statistically significant way over a 7 days basis (~ 3.78×10^{19} pot).

Simulated samples: ~ $1.5 \times 10^6 \nu_{\mu}$ CC inteactions in ECAL, STT, LAr target (GENIE + GEANT) in FHC mode.

Momentum reconstruction: a minimum number of STT digits in the YZ bending plane is required to reconstruct particle's momentum

- for interaction in STT: \geq 4 digits

Neutrino energy:

 E^{ECAL} and E^{LAr} being the visible energy in SAND ECAL and LAr target and K^{STT} kinetic energy associated to reconstructed tracks.

Beam monitoring sensitivity

Sensitivity to different beam variations evaluated comparing the distributions of E_{ν}^{rec} expected for nominal and varied beam conditions using the test statistic:

$$T =$$

- shift of the beam axis

Sign

Shift of Beam Direction ificance $\Delta \chi^2 = 9$ in one week			Beam Parameters					
			Results (some)	$T\sim\Delta\chi^2$				
				EC/	AL	ECAL	+STT	
Component	X shift (cm)			Beam parameter	E_{ν}^{true}	$E_{\nu}^{ m rec}$	E_{ν}^{true}	E_{ν}^{rec}
ECAL	107.6			Horn current	107.6	76.1	158.2	105.6
STT	21.1			Water layer thick.	21.1	16.2	30.2	22.2
Combined	34.9			<i>p</i> beam radius	34.9	27.6	13.5	9.8
		I		<i>p</i> beam offset X	24.6	16.9	34.1	22.2
ificance > 3 with ECAL+STT one week for a 0.13 mrad change in beam direction.			p target density	18.0	14.3	25.6	19.6	
			<i>p</i> beam θ	0.7	0.2	1.1	0.3	
			Horn1 X shift	16.2	10.7	23.4	14.6	
				Horn2 X shift	0.4	0.2	0.6	0.3

Sigr

Conclusions

signal efficiency

figure of merit

(ext)background efficiency

0 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

The SAND ECAL and STT provide large rejection factors exceeding 3×10^{-5} against external backgrounds with minimal efficiency losses.

A significance exceeding $\Delta \chi^2 > 9$ achieved in one week of data taking for the detection of different changes in the beam parameters.

[1] B. Abi et al. [DUNE], 'Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume I Introduction to DUNE, JINST 15, no.08, T08008 (2020) doi:10.1088/1748-0221/15/08/T08008

[2] Nucl.Instrum.Meth.A614 (2010) 87-104; arXiv:1510.05494 [3] Nucl.Instrum.Meth.A506 (2003) 250-303

• for interaction in the ECAL and LAr target: \geq 6 digits

 $E_{\nu}^{rec} = E^{ECAL} + E^{LAr} + \sum K^{STT}$

$$\Delta \chi^2 = \sum_{i=1}^{N} \frac{(N_i^{nom} - N_i^{var})^2}{N_i^{nom}}$$

nominal distribution obtained from full Monte Carlo simulation varied distribution obtained by re-weighting the nominal one weights obtained from MC simulations, versus neutrino energy and