

Neutrino Physics

TEXONO @ KSNL

p- PCGe

n- PCGe

Low Threshold Detectors for Neutrino-Nucleus Elastic Scattering and the Studies of its Quantum-Mechanical Coherency Effects

Vivek Sharma

On behalf of TEXONO Collaboration

Home Base: Institute of Physics, Academia Sinica, Taiwan

Collaborating Partners: Taiwan, China, India, Turkey.

Based On: Coherency in neutrino-nucleus elastic scattering, S. Kerman et al. Phys. Rev. D 93, 113006 (2016).

OFHC Cu Box →

OFHC Cu Bricks —

soon

• Characterization and performance of germanium detectors with sub-keV sensitivities for neutrino and dark matter experiments, A.K. Soma et al. NIM in Phys. Res. A 836, 67-82 (2016).

Theory

TEXONO Program and Kuo-Sheng Nuclear Reactor Lab

 $\overline{v}_{e}e$ (SM)

TEXONO-CDEX Collaboration Taiwan (AS, INER, KSNPS), India (BHU,CUSB,GLAU), Turkey (METU, DEU), China (THU, CIAE, NKU, SCU, YLJHD)

Dark Matter Physics CDEX @ CJPL

Quenching Function for Ge Detector EDELWEISS 07 CoGeNT 07 **Neutrino Flux at KSNL** Recoil Energy (keV) **Threshold Advantages of G3+ Germanium detectors**

Less microphonic noise.

Customized achievable temperature. >Upgraded point contact electronics. **►** No Liquid Nitrogen needed.

At 200 eV_e

Neutrino-Nucleus Elastic Scattering vA

soon

Coherency in Neutrino-Nucleus Elastic Scattering vA

0 0 0.05 0.1 0.15 0.2 0.25 0.3 $q^2 (\times 10^3 \text{ MeV}^2)$

CsI/Xe Ge

Solar

 $q^2 (\times 10^3 \,\mathrm{MeV}^2)$

Reactor

\·.Ge

 $q^2 (\times 10^3 \, \text{MeV}^2)$

200 400 600 800 1000

 q^2 (MeV²)

