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Abstract Challenges Cross—Section Sensitivity

* In detecting neutrinos from the Large Hadron Collider, FASERvV will record the NC studies face two main obstacles at FASERv: » O/p of the NN’s gives us the

most energetic laboratory neutrinos ever studied. - The missing energy in the final state (carried away by the v) makes event energy reconstruction very difficult. This number of reconstructed _ NC Cross-Section Sensitivity
« While charged current neutrino scattering events can be cleanly identified by i1s a problem shared by all v NC studies. events in each energy bin (for >

an energetic lepton exiting the interaction vertex, neutral current interactions are * The main background for NC events at FASERv are a total of ~ 7000 events). > >1

more difficult to detect. - CC events: This is a less severe problem as the charged lepton in the final state can be used to identify and reject + This gives us the size of the E‘; 4

* We explore the potential of FASERV to observe neutrino neutral current these events. statistical uncertainty on v NC i 1 T I =i d-TT II:[ ﬂﬂﬂﬂﬂ =
scattering VN—VN, demonstrating techniques to discriminate neutrino scattering - Neutral Hadrons (NH), mainly induced by |’s. Apart from the V’s, only JU’s can travel from the interaction point all the interaction cross-section. E N | .

events from neutral hadron backgrounds as well as to estimate the incoming way through rock to the FASERV detector (~500m). The Y’s interact with the rock in front of the detector and within the e The other sources of S ) L EE??E; flux
neutrino energy given the deep inelastic scattering final state. detector producing NHs, our most dominant background. NH interactions look very similar to our NC signal events. uncertainty are background D R |

* We find that neural networks trained on kinematic observables allow for the uncertainty and incoming v o107 N e-lutrilnu IEr;l elré;igev]
measurement of the neutral current scattering cross-section over neutrino A N a { g S l'S flux uncertainty (dominant

energies from 100 GeV to several TeV. one).

* We use 2 neural network (NN) trained on 9 kinematic observables to perform the classification task (signal vs

* Such a measurement can be interpreted as a probe of neutrino non-standard . ' . . .
background) and regression task (incoming particle energy reconstruction).

o
interactions that is complementary to limits from other tests such as oscillations Agwer for signal and background Euisivie for signal and background N 0 N —Sta V\,da V d l V\,te V a Ctl 0 V\,S

 Event observables are: == . — g -
and coherent neutrino-nucleus scattering. o " || signal-PYTHIA - 100Gev 1 16 {|E2 signal - 100Gev
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o Scalar Cone Angle: tan 05, = (X pr)/(p:) ~ Hr/Enaa i « Neutrino oscillations and neutrino-nucleus scattering probe only the vector
* The LHC produces many vs in the far forward (low PT) region from meson e ol gp y

@ Vector Cone Angle: tanf), .= (Y pri)/(Y pi) ~ pr/Ehad
0.02 -

decays in the ~ [IOOGeV—feW TeV] range. @ Largest Azimuthal Gap: The largest difference in azimuthal angle : :ik—\_‘\ couplmgs.
00 4+ —

a— between two neighbouring tracks, Admax (large for events where a v o 25 S0 75 10 135 180 15 200 Ny 103 . ngh enerqgy eXPeriments (111<e at FASERV) can probe NSI regardless of the
o : - |
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recoils all other hadronic activity). Dduer Evisibie [GeV]
o Track-MET-Angle: The azimuthal angle between the reconstructed 1 WO Of the observables that illustrates the difference between signal at 2

underlying spin structure and hence sensitive to vector and axial couplings.
missing transverse momentum, p. and the nearest track, Adypr.
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There are 3 event topologies we need to consider: o , , _ 05 05l
* Only events classified as signal are fed into the * Below we show the performance of the regression |
* Neutrino charged current events (CC), identifiable by the charged lepton in the , , P |
regression network. network in a true energy vs reconstructed energy heat ~108 . Gscillations + COHERENT -1.0
final state. iction distributi | - ol e |
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* Neutral hadron backgrounds (NH), they mimic the NC signal S00000:H i o CO V\-C I MS ( 0 V\-S
| ﬁ 3 o . . o .
! 2 2  There is much physics to be studied in the forward region at LHC.
emulsion films., final state neutrino electron track with EM shower muon track ! S §
b / - | - : 2000007 i 2 « FASERYV is the dedicated experiment to study collider neutrinos at few GeV to
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, .- | | few TeV range, new energy range for neutrino physics.
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Interaction Spectrum within FASERv Detector

. _ : : : 5.

Results for the CC study: FASERV probes an important energy gap in neutrino 0% oy Somal » The expected numbers of neutral hadron interactions (green) and NC
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