Sensitivity Projection for Future Double Beta Decay Experiments

M. K. Singh

Institute of Physics, Academia Sinica, Taipei, Taiwan
Based on: M. K. Singh, H. T. Wong et al., Phys. Rev. D 101, 013006 (2020).

Introduction

§ Neutrinoless double beta decay (0v $\beta \beta$) [Furry, 1939]
${ }_{Z}^{N} A_{\beta \beta} \rightarrow{ }_{Z+2}^{N-2} A_{\beta \beta}+2 \bar{e}$

- Forbidden in Standard Model !!
- $\Delta \mathbf{L}=2$!!!

Observation of $0 \nu \beta \beta$ implies new physics:

- Neutrinos are Majorana particles $(v=\bar{v})$
- Lepton number violations
- Effective light Majorana Neutrino Mass $\left\langle m_{\beta \beta}\right\rangle \neq 0$

Energetically possible for 35 nuclei

- A few are experimentally relevant § Present work: Required Exposure vs Background

Formulation

Δ Half-life in Mass Mechanism : $\left[\frac{1}{T_{1 / 2}^{0 v}}\right]=G^{0 v} g_{A}^{4}\left|M^{0 v}\right|^{2}\left|\frac{\left\langle m_{g \beta}\right\rangle}{m_{e}}\right|^{2}$
Δ Effective Mass: $\left\langle m_{\beta \beta}\right\rangle=\left|U_{e 1}^{2}\right| m_{1}+\left|U_{e 2}^{2}\right| m_{2} e^{i \alpha}+\left|U_{e 3}^{2}\right| m_{3} e^{i \beta} \mid$ © Experimentally measurable Half-life:
$\boldsymbol{T}_{1 / 2}^{0 \nu}=\ln 2 \cdot N\left(A_{\beta \beta}\right) \cdot t_{\mathrm{DAQ}} \cdot\left[\frac{\varepsilon_{\text {Rol }}}{N_{o b s}^{o v}}\right]=\ln 2 \cdot\left[\frac{N_{A}}{M\left(A_{\beta \beta}\right)}\right] \cdot \sum \cdot\left[\frac{\varepsilon_{\text {Rol }}}{N_{o b s}^{o v}}\right]$

© Combined Half-life:

$\left|M^{0 v}\right|^{2}\left[g_{A}^{4} \cdot H^{0 v}\right]=\frac{1}{\left\langle m_{\beta \beta} \beta^{2}\right.}\left[\frac{1}{\Sigma} \cdot \frac{N_{o b s}^{o v}}{\varepsilon_{R o l}}\right] ; \boldsymbol{H}^{0 v} \equiv \ln 2\left(\frac{N_{A}}{M\left(A_{\beta \beta} \cdot \cdot m_{e}^{2}\right.}\right) \cdot G^{o v}$

Discovery Potential \& Theme

[Poisson statistics handles:

\square Theme: To reach the following target sensitivities:

Relating $T_{1 / 2}^{0 \nu}$ with $\left\langle m_{\beta \beta}\right\rangle$ - Model for $\mid M^{\sigma^{v} \mid}$

* Model - Inverse correlation between $\mathrm{G}^{0 v}$ and $\left|M^{o v^{0}}\right|^{2}$
* Decay rates (1 event/ton-yr with full efficiency) are similar at
given $\left\langle m_{\beta \beta}\right\rangle$ and constant g_{A}.

* No favored $0 \nu \beta \beta$ isotope.

$$
\sum \text { (ton-year) } \cdot\left(\frac{\varepsilon_{\mathrm{RoI}}}{N_{\mathrm{obs}}^{0}}\right) \alpha\left(\frac{1}{\left\langle m_{\beta \beta}\right\rangle}\right)^{2}
$$

\star Realistic interpretation lies within a factor of [0.5, 2.0].
Required Exposure and Background $>$ RoI $=w_{1 / 2}(F W H M)$: Not the optimal choice when $B_{0} \rightarrow 0$ $>$ Alternative choice: $\mathbf{R o I} \equiv \mathrm{w}_{3 \sigma}\left(\mathrm{Q}_{\beta \beta} \pm 3 \sigma\right)$, thus $\varepsilon_{\text {RoI }} \cong \mathbf{1 0 0} \%$ $>$ Better sensitivity by a factor of $\varepsilon_{\text {RoI }}\left(\mathrm{w}_{1 / 2}=0.76\right)$.
$>$ Covered $T_{1 / 2}^{0 \nu}$ is $\mathbf{3 2 \%}$ longer, or Σ is 24% less.
$>$ Background Index (BI) defined as: $\mathrm{BI}=\left(\frac{\mathrm{B}_{0}(\text { Rol) })}{\Sigma}\right)$ > Universally applicable

Target exposure: Next-generation $0 \nu \beta \beta$ projects 10 ton-year to cover IH
$\mathrm{BI}<0.21$ counts/w w $_{1 / 2}$-ton-yr $\|$ cover $\left\langle m_{\beta \beta}{ }_{95 \%}^{\mathrm{IH}}>\right.$ $\mathrm{BI}<0.033$ counts $/ \mathrm{w}_{1 / 2}$-ton-yr $\|$ cover $\left\langle m_{\beta \beta_{-}}^{\mathrm{IH}\rangle}\right.$

GERDA: Background level $=1 . \mathbf{0}_{-0.4}^{+0.6}$ counts/keV-ton-yr or BI ~ 3 counts $/ w_{1 / 2}$-ton-yr.
Choice: $\mathrm{Bl} \equiv \mathrm{Bl}_{0}=1$ count/w1/2-ton-yr requires 110 ton-yr $\|$ cover $\left\langle m_{\beta \beta}>-\right.$ 11 Mton-yr $\|$ cover $<m_{\beta \beta}>_{-}^{\mathrm{NH}}$
$>$ Suppression in BI: [1 to 10^{-3}] counts/($w_{1 / 2}$-ton-yr) contributes reduction in exposure

Limiting Irreducible Background Standard-Model-allowed irreducible background ${ }_{Z}^{N} A_{\beta \beta} \rightarrow{ }_{Z+2}^{N-2} A_{\beta \beta}+2 \bar{e}+2 \bar{v}$ [Goeppert-Mayer, 1935] Worse resolution (Δ) \Rightarrow Larger RoI \Leftrightarrow Larger $2 \nu \beta \beta$ Background

Resolutions under $\mathrm{BI}_{\text {min }}$ conditions $\Delta \leq(0.3-0.9) \% \|$ cover $\left\langle m_{\beta \beta_{-}}{ }^{\mathrm{IH}}\right\rangle$ $\Delta \leq(0.1-0.3) \% \quad$ cover $\left\langle m_{\beta \beta_{-}}{ }^{\mathrm{NH}}\right\rangle$

* MJD Best Resolution $\left.\Delta{ }^{(76} \mathrm{Ge}\right)=0.12 \%$,
$\mathrm{BI}<6 \times 10^{-10}$ counts/(w_{122}-ton-yr)
Conversion to Realistic Configurations
IA $=100 \%, \varepsilon_{\text {expt }}=100 \%$ and "unquenched" free nucleon value of $\mathrm{g}_{\mathrm{A}}=1.27$ $\mathrm{g}_{\mathrm{A}}=1.27$
Conversion
In realistic experiments:
$\Sigma^{\prime} \simeq \Sigma \cdot \frac{1}{I A} \cdot \frac{1}{\varepsilon_{\text {expt }}} \cdot \mathbf{W}_{\Sigma}\left(g_{A}\right)$ and $\operatorname{BI}^{\prime}\left(\Sigma^{\prime}\right) \simeq \operatorname{BI} \cdot\left[\frac{\Sigma}{\Sigma^{\prime}}\right]$

Summary
Covering $\left\langle m_{\beta \beta}{ }^{\mathrm{NH}}\right\rangle$ will require large and costly exposure.
Reduction of BI will be playing increasingly significant.
Same exposure can probe longer $T_{1 / 2}^{00}$ and smaller $\left\langle m_{\beta \beta}\right\rangle$ with decreasing background.

