Wengiang Gu Brookhaven National Laboratory | wgu@bnl.gov

1. MicroBooNE

- Fermilab • Near-surface operation
- Main physics goals excess
 - sections

2. ν_{μ} CC inclusive selection

1			
T	5e-5	1	500 F
80%	65%	7e-6	400
64%	93%	7e-7	
	64%	80% 65% 64% 93%	80% 65% 7e-6 64% 93% 7e-7

- Achieved excellent cosmic- μ rejection • Wire-Cell reconstruction: arXiv:2101.05076 o Generic-ν detection: arXiv:2012.07928, arXiv:2011.01375
- The high-statistics event selection allows for high-precision cross-section measurements ○ MICROBOONE-NOTE-1095-PUB

5. Towards a cross-section extraction

Measured # of events	Target nucleons	Cross section Section Sector \mathbf{S}_{V}) $\cdot D(E_{V}, E_{rec}) \cdot \mathbf{C}_{V}$
$M(E_{rec}) = POT \cdot T$ Proton-on-target	$\int F(E_v) \cdot \sigma(E_v)$ get Neutrino flux	Detector response
Extract theMore dimen	cross sectior sions are allo	$\sigma_{CC} (E_{\nu})$ wiscoved: $d\sigma_{CC}/d$

kinematics

oLArTPC with 85-ton active mass

OInvestigate MiniBooNE low-energy

 \circ Measure ν -Ar interaction cross

th data unfolding technique $dE_{\mu}, d\sigma_{CC}/d\nu, d\sigma_{CC}/dE_{\mu}d\theta_{\mu}$

Model Validation and Cross-Section Extraction of Inclusive $v_{\mu}CC$ μBooNE

3. Model validation: E_v to E_v^{rec}

• Neutrino energy modeling is crucial for neutrino oscillation measurements \circ Key challenge: understanding ν -Ar cross section as a function of energy

• A new procedure for validating E_v^{rec} from model prediction: \circ Reco muon energy and kinematics (E_{μ}^{rec} , $cos\theta_{\mu}^{rec}$) are verified with data measurement first \circ Reco hadron energy (E_{had}^{rec}) is further validated given a conditional constraint of the muon

4. Validation of hadron energy reconstruction

 $M_i = \sum_j R_{ij} S_j \iff \hat{S} = A_C \cdot R^{-1} \cdot M$

- A data-driven correction for the model prediction of Y given a measurement of X
- Common systematic uncertainties (e.g., flux) are reduced
- \Rightarrow more stringent model validation

• After constraint with E_{μ}^{rec} and $\cos\theta_{\mu}^{rec}$: no more excess at low hadronic energy

- Significant reduction in overall uncertainties $(20\% \rightarrow 5\%)$ • No sign of mis-modeling of the
 - hadron missing energy

M: measured event distribution S: binned true distribution R_{ii} : response matrix (reco bin i and true bin j) A_C : regularization, also applied to models when comparing result to theoretic predictions