

Introduction

The lepton sector of the Standard Model (SM) provides perhaps the best window into Beyond Standard Model (BSM) physics given the confirmed observation of non-zero neutrino masses. So-called "sterile neutrinos" are are present in almost all SM extensions that include neutrino mass, and have the characteristic property that they are non-interacting with respect to the SM forces. In particular, sterile neutrinos in the sub-MeV mass range are among the most highly motivated, since they have the right cosmological properties to explain the observed dark matter in our universe [1, 2, 3, 4]. The BeEST experiment is a *model independent* search for these heavy mass states (and other exotic scenarios) in the 10 - 862 keV mass range that uses decay

- and Type-I Seesaw) [2]
- $(3+n) \times (3+n)$ transformation with $\nu_i \geq 4$ "mostly sterile" mass eigenstates

$$\begin{bmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{bmatrix} = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{bmatrix}$$

$$\implies |\nu_{\alpha}\rangle = \sum_{i=1}^{(3+n)} U_{\alpha i} |\nu_i\rangle.$$

- \blacktriangleright Discrete kinetic energies for the emitted ν_e and daughter recoil

- Simple atomic (Z = 4) and nuclear (A = 7) structure

The BeEST Experiment: A Search for sub-MeV Sterile Neutrinos with Superconducting Quantum Sensors

C. Bray¹ R. Cantor² J. Dilling³ S. Fretwell¹ S. Friedrich⁴,[†] G.B. Kim⁴ K.G. Leach^{1,*} A. Lennarz³ V. Lordi⁴ D. McKeen³ X. Mougeot⁶ F. Ponce⁸ M. Redshaw⁹ C. Ruiz³ A. Samanta⁴ J. Stackhouse¹ W.K. Warburton¹⁰

The BeEST Experimental Concept

RIUMF

Rare-isotope implantation at TRIUMF-ISAC

BEEST

¹Colorado School of Mines ²Star Cryoelectronics LLC ³TRIUMF ⁴Lawrence Livermore National Lab ⁵Michigan State University ⁶CEA-Saclay ⁷LPC-Caen ⁸Pacific Northwest National Laboratory ⁹Central Michigan University ¹⁰XIA LLC

- Single sensor counting at low rate (≤ 10 counts/s) for 28 days
- ▶ Up to an order of magnitude improved limits for $m_s \approx 100 850 \text{ keV}$

Scaling to Large STJ Arrays for Phases-III and -IV

Tantalum STJs (1.5 eV FWHM)

Sensitivity Projections for the BeEST Experiment

References and Funding

- 1] S. Dodelson and L. M. Widrow, Phys. Rev. Lett. **72**, 17-20 (1994)
- 2] T. Asaka et al., Phys. Lett. B 631, 151-156 (2005)
- 3] R. Adhikari *et al.*, J. Cosmol. Astropart. Phys. **25**, (2017) 4] A. Boyarsky *et al.*, Prog. Part. and Nucl. Phys. **104**, 1-45 (2019)
- 5] F. Ponce et al., Phys. Rev. C 97, 054310 (2018)
- 6] S. Fretwell *et al.*, Phys. Rev. Lett. **125**, 032701 (2020)
- 7] S. Friedrich et al., Jour. Low Temp. Phys. 200, 200 (2020)
- [8] S. Friedrich et al., Phys. Rev. Lett. 126, 021803 (2021)

U.S. DEPARTMENT OF ENERGY Office of Science

First Limits from "Low Rate" Phase-II Data – [PRL 126, 021803 (2021)]

Aluminum STJs on thin membranes (0.8 eV FWHM)

