Wei Tang (University of Tennessee), on behalf of MicroBooNE Collaboration

μBooNE

1. Introduction

- MicroBooNE detector is a Chamber (LArTPC) with 85 tons active mass
- 3 wire planes with 8912 wires
- 1 collection plane and 2 induction planes

- 32 8-inch Photomultipliers (PMTs)

2. Noise Filtering and Signal Processing

- Powerful filtering techniques can address
- Excellent characterization of multiple wire signal response (2D
- Robust signal processing three planes (enabling induction planes)^[2]

References

- [1] "Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC", JINST 12, P08003 (2017)
- [5] "Calibration of the Charge and Energy Response of the MicroBooNE Liquid Argon Time Projection Chamber Using
- Muons and Protons", JINST 15, P03022 (2020)
- [7] "Novel Approach for Evaluating Detector Systematics in the MicroBooNE LArTPC", MICROBOONE-NOTE-1075-PUB
- [8] "Measurement of the Electronegative Contaminants and Drift Electron Lifetime in the MicroBooNE Experiment", MICROBOONE-NOTE-1003-PUB

Effects Captured
Diffusion, Argon purity, SCE
Individual wire response and SCE residuals
range induced charge effects, signal processing, deconvolution effects
cts local charge deposition, e.g. recombination
Mis-modeling of light production
Alternate SCE corrections
lis-modeling of charge recombination effects