T2K neutrino beam flux prediction with improved MC tuning using latest NA61/SHINE hadron production data

1. The T2K Experiment^[1]

Study neutrino oscillation with accelerator neutrinos. Goal: 30 evidence for CP-violation in leptonic sector.

2. Neutrino flux prediction^[3]

Protons produce π ,K mesons from hadronic interactions in target \rightarrow simulate with FLUKA.

Outgoing mesons are focused with magnetic horns and produce neutrinos in decay tunnel \rightarrow simulate with Geant3.

Afterwards apply weights to <u>tune</u> each simulated hadronic interaction to experimental data (mostly NA61).

Why improve flux?

- Flux is leading systematic for xsec measurements.
- SK/ND280 flux covariance matrix essential for oscillation analysis.

References:

- . K. Abe et al. (T2K), Nucl. Instrum. Meth. A 659, 106 (2011
- Kamioka Observatory, ICRR, The University of Tokyo.
- K. Abe et al. (T2K Collaboration), Phys. Rev. D 87, 012001 (2013).
- N. Abgrall et al. (NA61/SHINE), *JINST* **9**, P06005 (2014).
- 5. N. Abgrall et al. (NA61/SHINE), Phys. Rev. C 84, 034604 (2011).

4. Uncertainties on hadronic interactions

8. Total uncertainty on flux & summary

Final uncertainty on flux goes down from 9–12% with thin tuning to 5-7% with replica tuning, comparable to nonhadronic systematics. With most recent 2010 replica measurements, these low errors are achieved up to high energies, will be used in the <u>upcoming oscillation analysis</u>.

For <u>further reduction</u> need meson scattering data from future hadron production experiments. Studies ongoing for reduction of other systematics like proton beam profile and proton number uncertainty.

- 6. N. Abgrall et al. (NA61/SHINE),
- *Eur. Phys. J.* C **76**, 84 (2016)
- N. Abgrall et al. (NA61/SHINE). Nucl. Instrum. Meth. A 701, 99 (2013).
- 8. N. Abgrall et al. (NA61/SHINE). *Eur. Phys. J.* C **76**, 617 (2016).
- 9. N. Abgrall et al. (NA61/SHINE).
- *Eur. Phys. J.* C **79**, 100 (2019). 10. T. Vladisavljevic, in *NuInt workshop*,
- 15-19 Oct 2018, L'Aquila, Italy (2018).
- 11. P. Dunne, in Neutrino 2020, DOI:10.5281/zenodo.3959558 (2020).

5. Unconstrained interactions

Even after replica tuning, and using available thin target measurements, some interactions cannot be assigned an uncertainty from data. Conservative error to cover MC model differences is assigned in $(x_{\rm F}, p_{\rm T})$ space.

In particular few-GeV π^{\pm} , K scattering on AI (horns) and Fe (walls) outside the target are dominant contribution to wrong sign flux unc. These can cause ν_e/ν_μ uncorrelated errors (problematic for precise measurement of leptonic CP violation) and need to be reduced in future with new hadron production measurements.

6. Compatibility with thin tuning

Good agreement near flux peak, for higher energies discrepancy is observed.

Parametrized fits suggest origin is re-scattering model of very forward π^{\pm} , K[±] in *thin* tuning. We think replica tuning is more reliable.

7. Consistency checks using fake data

_	Untune	d fluxes (r
l NuBeam	1.25 1.2 1.15	Untu
) / Geant4	1.1	T2K work
(untuned)	0.95	
2011.2x	0.85	
luka	0.75⊑ 10 ⁻¹	

T	IIIII t		чg
a)	1.25	- '	
dat	1.2	- T2K wo	ork
ake	1.15	E	
1) †	1.1		
sant	1.05		
5	1	=	
_	-	_	
nea	0.95		
(runed	0.95 0.9		
.2X (tuned	0.95 0.9 0.85		
UII.2X (Tuned	0.95 0.9 0.85 0.8		
ZUII.ZX (Tuned)	0.95 0.9 0.85 0.8		
ka 2011.2X (tuned)	0.95 0.9 0.85 0.8 0.75		
	/ Ucanit (lake data)	1.25 1.2 1.15 1.15 1.15 1.05 1.05	1.25 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2

Replica 2010

 E_{v} (GeV)

 $\Phi \times E_{v}$, Arb. Norm.

2009