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Motivation

Figure 1. An Event in Detector
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Figure 2. A PMTWaveform

Waveform analysis, which means extracting time and charge information from PMTwaveforms,

is the bedrock of subsequent analysis such as event reconstruction.

Simulation Setup
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Figure 3. Time Profile φ(t) of Events
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Figure 4. Single PE response VPE(t)[1]

φ(t) = N (t|σ2) ⊗ Exp(t|τ )

= 1
2τ

exp

(
σ2

2τ2 − t

τ

)[
1 − erf

(
σ√
2τ

− t√
2σ

)]
VPE(t) = V0 exp

[
−1

2

(
log(t/τPE)

σPE

)2
]

Data Input & Output
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Figure 5. Input Waveform (Pedestal free)
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Figure 6. Output Time and Charge φ̂(t)

w(t) = φ̃(t) ⊗ VPE(t) + ε(t) =
NPE∑
i=1

qiVPE(t − ti) + ε(t) φ̃(t) =
NPE∑
i=1

qiδ(t − ti), NPE ∼ Poisson(µ)

Wasserstein Distance[2] as Evaluation Criteria

φ̃(t) (simulation truth) is an approximation of φ(t) (time profile).
φ̂(t) (reconstruction result) should be consistent with φ̃(t).

Figure 7. Wasserstein Distance Dw when p = 1: Earth Mover Distance

Dw

[
φ̂∗, φ̃∗

]
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γ∈Γ

[∫
|t1 − t2|p γ(t1, t2)dt1dt2

]1
p

Γ =
{

γ(t1, t2)
∣∣∣∣ ∫ γ(t1, t2)dt1 = φ̃∗(t2),

∫
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}
when p = 1, Cumulative distribution function (CDF) of φ(t) is Φ(t), Dw is a `1-distance:

Dw
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φ̂∗, φ̃∗

]
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∫ ∣∣∣Φ̂(t) − Φ̃(t)

∣∣∣ dt

Fast Bayesian Matching Pursuit[3] in waveform analysis

Fast Bayesian Matching Pursuit (FBMP) is a sparse regression algorithm, which origins from

the field of signal processing.

Time in DAQ window is divided into time bins: ~t, whose length is N . Each time bin can have
1 PE. As long as the bin width is small, the timing resolution will be retained.

Model vector: ~z. zi = 0 =⇒ qi = 0 and zi = 1 =⇒ qi 6= 0. When zi is 0, the corresponding

charge of PE in time bin ti will be 0, otherwise it may not be zero.

Linear Model: ~w = VPE~z + ~ε. This process is equivalent to φ̃ convoluting with Single PE, and
merely time is digitized.

[
~w
~q

]∣∣∣∣ ~z ∼ Normal
([

VPE~z
~z

]
,

[
Σz VPEZ

ZV
ᵀ

PE Z

])
Σz = VPEZV

ᵀ
PE + σ2

εI

where Z is the diagonal matrix of vector ~z controlling qi

Z = {~zj} contains 2N model vectors

FBMP Evaluation

Calculation of 2N model vectors is impossible!

Most of p(~w|~z) → 0!
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Figure 8. perfect PE matching

waveform, p(~z|~w) hit maximum
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Figure 9. not so perfect, p(~z|~w) is
smaller but still > 0
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Figure 10. Completely mismatch the

waveform, p(~z|~w) → 0

Most z can be ignored because most z does not correspond to the waveform. If we only

consider the model vector z with a relatively large posterior probability, the calculation effort

will be reduced.

log[p(~w, ~z)] = log[p(~w|~z)p(~z)]

= − 1
2
(~w − VPE~z)ᵀΣ−1

z (~w − VPE~z) − 1
2

log det Σz

− N

2
log 2π − µ +

∑
i|zi=1

log
µφ(t′i − t0)∆t′

1 − µφ(t′i − t0)∆t′

A repeated greedy search(RGS) is performed to construct the target set Z ′, which contains
only the ~z giving large p(~w|~z).

p(~z|~w) = p(~w|~z)p(~z)∑
~z′∈Z p(~w|~z′)p(~z′)

≈ p(~w|~z)p(~z)∑
~z′∈Z ′ p(~w|~z′)p(~z′)

FBMP’s Bayesian interface

PE Time: ~t
Models: Z ′ = {~zj}
Charge:

~̂qz = E(~q|~w, ~z) = ~z + ZV
ᵀ

PEΣ−1
z (~w − VPE~z)

Model’s posterior probability: p(~z|~w)
The final result of FBMP is the time vector, several models, and their corresponding charge

vectors. Additionally, the posterior probability of each model. In commonly used fitting

methods such as Maximum likelihood estimation (MLE), the posterior distribution is

approximated into delta function or normal distribution.

Provides opportunity for subsequent Bayesian analysis!

FBMP Demonstration
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Figure 11. Max posterior probability model in FBMP’s result, with Dw = 0.63 ns

FBMP’s Performance of Evaluation Criteria and Charge Posterior

For dataset (µ, τ, σ)/ns = (4, 20, 5), 104 waveforms:
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Figure 12. Dw of methods
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Figure 13. q̂ histogram of methods

FBMPperforms good onDw and retains charge distribution of PE.When the truth distribution of

charge is normal distribution, only FBMP can retain the distribution, which means every charge

in FBMP method can be regarded as one PE, while other methods can not work due to these

fragments of charge.
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