

Towards an Inelastic Cross Section Measurement of 6 GeV Kaons on Argon at ProtoDUNE Single-Phase

Richard Diurba (University of Minnesota) for the DUNE Collaboration

1. ProtoDUNE Single-Phase (ProtoDUNE-SP)

- Detector is a 700-ton liquid argon time-projection-chamber with two drift volumes.
- Prototypes DUNE Far Detector and evaluates hadron passage in argon.
- Uses the CERN Super Proton Synchotron 0.3-7 GeV/c test beam.
- Kaons are final-state particle in neutrino interactions and predicted in proton decay.
- Use kaons at high momentum to understand passage in argon.
- Beamline monitor uses Cherenkov detectors to select candidate kaons.

P (GeV/c)	Pion-like (k)	Proton-like (k)	Electron-like (k)	Kaon-like (k)
0.3	0	0	242.5	0
0.5	1.5	1.5	296.3	0
1	381.8	420.8	262.7	0 ,
2	333	128.1	173.5	5.4
3	284.1	107.5	113.2	15.6
6	394.5	70.1	197	27.9
7	343.7	58.4	112.9	28.3

Total cumulative candidate triggers from test beam.

Momentum distribution of candidate kaons

3. Fit of Kaon Inelastic Interaction Points using Monte Carlo as Fake Data

An interaction point is an inelastic scatter candidate found through the track endpoint.

- An incident point is a slice of the track where no interaction candidate occurred.
- Uses a template fit of interacting kinetic energy bins with multinomial statistics [2].

Interacting histogram for kaon candidate events of a Monte Carlo fit. Sorted by truth information.

2. Selection of Candidate Inelastic Scatters

- Candidate kaons are selected if a beamline particle:
- Passes a quality check using the beamline monitor data.
- Contains reconstructed track calorimetry information.
- Ends in the first APA to prevent broken tracks being mis-identified.

Efficiency and purity using the candidate kaon selection in simulation.

Candidate inelastic kaon scatter in data. The interaction creates a messy spread of hadronic activity.

4. Extraction of Cross Section using Monte Carlo-to-Monte Carlo Fit

- Focus on implementing systematic uncertainties related to beam performance and detector physics.
- The dataset will then be unblinded to reveal the result from ProtoDUNE-SP.

- Cross section calculated using post fit incident and interacting histograms.
- The uncertainties extracted from correlated throws from covariance matrix.

Cross section measured using Mote Carlo-to-Mote Carlo fit. Statistical errors only are shown.

References

- S. Agostinelli, et al. Geant4-a simulation toolkit, Nuclear Instruments and Methods A, 506 (2003) 250-303.
- S. Baker and R. D. Cousins, Clarification of the use of chi-square and likelihood functions in fits to histograms, Nuclear Instruments and Methods 221 (1984) 437-442.