Towards an Inelastic Cross Section Measurement of 6 GeV Kaons on Argon at ProtoDUNE Single-Phase
Richard Diurba (University of Minnesota) for the DUNE Collaboration

1. ProtoDUNE Single-Phase (ProtoDUNE-SP)
 - Detector is a 700-ton liquid argon time-projection-chamber with two drift volumes.
 - Prototypes DUNE Far Detector and evaluates hadron passage in argon.
 - Uses the CERN Super Proton Synchotron 0.3-7 GeV/c test beam.
 - Kaons are final-state particle in neutrino interactions and predicted in proton decay.
 - Use kaons at high momentum to understand passage in argon.
 - Beamline monitor uses Cherenkov detectors to select candidate kaons.
 - Beamline monitor uses Cherenkov detectors to select candidate kaons.

2. Selection of Candidate Inelastic Scatters
 - Candidate kaons are selected if a beamline particle:
 - Passes a quality check using the beamline monitor data.
 - Contains reconstructed track calorimetry information.
 - Ends in the first APA to prevent broken tracks being mis-identified.

3. Fit of Kaon Inelastic Interaction Points using Monte Carlo as Fake Data
 - An interaction point is an inelastic scatter candidate found through the track endpoint.
 - An incident point is a slice of the track where no interaction candidate occurred.
 - Uses a template fit of interacting kinetic energy bins with multinomial statistics [2].

4. Extraction of Cross Section using Monte Carlo-to-Monte Carlo Fit
 - Cross section calculated using post fit incident and interacting histograms.
 - The uncertainties extracted from correlated throws from covariance matrix.

References