

ABSTRACT

- The ingenuity of this work is to build a model that explains neutrino oscillation data under A'_5 Modular symmetry making usage of Inverse Seesaw mechanism.
- The Standard Model (SM) is extended by three RH neutrinos (N_{Ri}) and three Sterile neutrinos (S_{Li}) along tent.

INTRODUCTION

• A'_5 Modular Symmetry: A'_5 modular symmetry has 120 elements divided into 9 conjugacy classes denoted as $\mathbf{1}, \mathbf{\hat{2}}, \mathbf{\hat{2}'}, \mathbf{3}, \mathbf{3'}, \mathbf{4}, \mathbf{\hat{4}}, \mathbf{5}$ and $\mathbf{\hat{6}}$ by their dimensions for N = 5 and τ being the complex variable given by

$$\tau \longrightarrow \gamma \tau = \frac{a\tau + b}{c\tau + d}$$

and ad -

• Inverse Seesaw: The light neutrino mass matrix under the inverse seesaw in the flavor basis of (ν_L, N_R, S_L^c) is expressed as

$$\mathbb{M} = \begin{pmatrix} 0 \\ M_D^T \\ 0 \end{bmatrix}$$

• The resulting mass formula

$$m_{\nu} = M_D \ M_{RS}^{-1} \ M_{\mu} \ (M_R^{-1})^{-1} \ M_{\mu} \ M_R^{-1}$$

MODEL FRAMEWORK

- The particle content of the model and their Quantum nos are given in Table 1.
- Thus, one can write the interaction Lagrangian for the **Charged Lepton**, **Dirac**, **Mixing of Heavy fermions** N_R & S_L & Majorana mass term are given in Eqns. ??, ??, ??, ?? respectively

$$\mathcal{W}_{\mathcal{M}_l} = \alpha_l \left[(\overline{L_L} e_R)_{\mathbf{3}} Y_{\mathbf{3}}^{(2)} \right] \mathcal{H}_d + \beta_l \left[(\overline{L_L} \mu_R)_{\mathbf{3}} Y_{\mathbf{3}}^{(2)} \right] \mathcal{H}_d$$

$$\mathcal{W}_D = \mathcal{H}_u \left[(\overline{L_L} \, \mathcal{N}_R)_4 \sum_{i=1}^2 Y_{4,i}^{(6)} \right]$$

$$\mathcal{W}_{\mu} = \mu_0 \overline{S}$$

Fields	e_R	μ_R	$ au_R$	$\overline{L_L}$
$SU(2)_L$	1	1	1	2
$U(1)_Y$	1	1	1	
$U(1)_{B-L}$	-1	-1	-1	1
A_5'	1	1	1	3
k_I	2	4	6	0

Table 1: Particle content of the model and their charges under $SU(2)_L \times U(1)_Y \times U(1)_{B-L} \times A'_5$ where k_I is the number of modular weight.

Inverse Seesaw under A'_5 **Modular symmetry**

Mitesh Kumar Behera^{*a*}, Rukmani Mohanta^{*b*}, University of Hyderabad^{*a,b*}, Hyderabad, India-500046 E-mail: miteshbehera1304@gmail.com^a, rukmani98@gmail.com^b

MASS MATRIX AND MIXING ANGLES EXPRESSION $M_{\ell} = \frac{v_d}{\sqrt{2}} \begin{pmatrix} \alpha_l \left(Y_{\mathbf{3}}^{(2)} \right)_1 & \left(Y_{\mathbf{3}}^{(4)} \right)_1 & \left(\frac{2}{i=1} Y_{\mathbf{3},i}^{(6)} \right)_1 \\ \left(Y_{\mathbf{3}}^{(2)} \right)_3 & \beta_l \left(Y_{\mathbf{3}}^{(4)} \right)_3 & \left(\frac{2}{i=1} Y_{\mathbf{3},i}^{(6)} \right)_3 \\ \left(Y_{\mathbf{3}}^{(2)} \right)_2 & \left(Y_{\mathbf{3}}^{(4)} \right)_2 & \gamma_l \left(\frac{2}{i=1} Y_{\mathbf{3},i}^{(6)} \right)_2 \end{pmatrix}, M_D = \frac{v_u}{2\sqrt{6}} \begin{pmatrix} 0 & -\sqrt{2} \left(\frac{2}{i=1} Y_{4,i}^{(6)} \right)_3 & -\sqrt{2} \left(\frac{2}{i=1} Y_{4,i}^{(6)} \right)_2 \\ \sqrt{2} \left(\frac{2}{i=1} Y_{4,i}^{(6)} \right)_4 & g_{D_2} \left(\frac{2}{i=1} Y_{4,i}^{(6)} \right)_2 & -\sqrt{2} \left(\frac{2}{i=1} Y_{4,i}^{(6)} \right)_1 \\ \sqrt{2} \left(\frac{2}{i=1} Y_{4,i}^{(6)} \right)_1 & \left(\frac{2}{i=1} Y_{4,i}^{(6)} \right)_4 & -g_{D_3} \left(\frac{2}{i=1} Y_{4,i}^{(6)} \right)_3 \end{pmatrix}, \end{pmatrix}$ with one flavon field which eliminates unwanted terms in the superpotential and keeping the model consis- $M_{RS} = \frac{v_{\zeta}}{\sqrt{2}} \begin{pmatrix} 2 \alpha_{RS_1} \left(\sum_{i=1}^{2} Y_{5,i}^{(6)} \right)_1 & -\sqrt{3} \left(\sum_{i=1}^{2} Y_{5,i}^{(6)} \right)_4 & -\sqrt{3} \left(\sum_{i=1}^{2} Y_{5,i}^{(6)} \right)_3 \\ -\sqrt{3} \left(\sum_{i=1}^{2} Y_{5,i}^{(6)} \right)_4 & -\sqrt{6} \alpha_{RS_2} \left(\sum_{i=1}^{2} Y_{5,i}^{(6)} \right)_2 & -\left(\sum_{i=1}^{2} Y_{5,i}^{(6)} \right)_1 \\ -\sqrt{3} \left(\sum_{i=1}^{2} Y_{5,i}^{(6)} \right)_2 & -\left(\sum_{i=1}^{2} Y_{5,i}^{(6)} \right)_1 & -\sqrt{6} \alpha_{RS_3} \left(\sum_{i=1}^{2} Y_{5,i}^{(6)} \right)_1 \end{pmatrix},$, where $a, b, c, d \in \mathbb{Z}$ $M_{\mu} = \mu_0 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}.$ -bc = 1, $Im[\tau] > 0$ $M_D \\ 0 \\ M_{RS}^T$ $\begin{pmatrix} 0 \\ M_{RS} \\ M_{\mu} \end{pmatrix}$ $\sin^2 \theta_{13} = |U_{13}|^2, \quad \sin^2 \theta_{23} = \frac{|U_{23}|^2}{1 - |U_{13}|^2}, \quad \sin^2 \theta_{12} = \frac{|U_{12}|^2}{1 - |U_{13}|^2}. \ [U \text{ diagonalizes matrix (1)}]$ (1) $\binom{-1}{RS}^T (M_D)^T + \text{transpose.}$ (2)RES **0.10** ర్ 0.000 0.00 0.015 0.020 0.025 0.03 0.06 0.08 0.10 0.12 0.14 **Figure 1:** These plots express mixing angles $\sin^2 \theta_{13}$ (left), $\sin^2 \theta_{12}$ and $\sin^2 \theta_{23}$ (left middle), m_{ee} [eV] (right middle) versus Σm_i [eV] and J_{CP} $_{\mathbf{3}}Y_{\mathbf{3}}^{(4)} \left[\mathcal{H}_{d} + \gamma_{l} \left[(\overline{L_{L}}\tau_{R})_{\mathbf{3}} \left\{ \sum_{i=1}^{2} Y_{\mathbf{3},i}^{(6)} \right\} \right] \mathcal{H}_{d}, \right]$ versus $\sin^2 \theta_{13}$ (right). (3) CONCLUSION $Diag(g_{D_1}, g_{D_2}, g_{D_3}),$ (4)• We have studied the inverse seesaw mechanism under modular A'_5 symmetry along with the $U(1)_{B-L}$ local symmetry, forbidding unnecessary terms and restrict structures of relevant superpotential terms. • We were able to successfully explain the observed neutrino oscillation data (mixing angles and the mass- $\overline{S_L}N_R)_5 Y_{5,1}^{(6)} + (\overline{S_L}N_R)_5 Y_{5,2}^{(6)}]\zeta,$ (5)squared differences) as well as the cosmological bound on neutrino masses i.e., $\Sigma m_i \leq 0.12 \text{ eV}$. $\overline{\mathcal{S}_L^c}S_L.$ ACKNOWLEDGEMENT (6)• I would like to thank my Ph. D. supervisor Prof. Rukmani Mohanta for her continuous guidance. S_L $\mathcal{H}_{u,d}$, N_R ' • I would like to thank DST-INSPIRE for financial support. REFERENCES -1 6 0

						0.10
∑m _v >0.12 eV (Excluded region)	0.15	∑m _∨ >0.12	eV (Exclud	ed region)	-	0.08
	ວ ອີ 0.10 ຂໍ້		• 2.			ی ی ی
······································	بم 0.05	S	sin ² θ ₁₂ S	1n-923		ຮຶ 0.04
						0.02
0.016 0.018 0.020 0.022 0.024 0.026 0.028 0.0 sin ² θ ₁₃	30 0.00	0.2	$0.4 \\ \sin^2 \theta_{12}, \sin^2 \theta_2$	0.6	0.8	0.00 0.02 0.04

[1] T. Nomura, H. Okada, S. Patra, An Inverse Seesaw model with A₄-modular symmetry, arXiv:1912.00379 [hep-ph]. [2] X. Wang, B. Yu and S. Zhou, Double covering of the modular A_5 group and lepton flavor mixing in the minimal seesaw *model*, Phys. Rev. D **103**, no.7, 076005 (2021) [arXiv:2010.10159 [hep-ph]].

