

Exploring non-unitary mixing of active neutrinos at T2K, T2HK, and T2HKK

Soumya C.

Institute of Physics Bhubaneswar, Sachivalaya Marg, Sainik School POST, Odisha, India 751005.

Email: soumyac20@gmail.com

Abstract

- Investigates the capability of long-baseline experiments T2K, T2HK, and T2HKK in establishing the unitarity of active-neutrino mixing by ruling out the non-unitary mixing scheme as a function of true values of CP-violating phase δ_{CP} .
- Obtain the bound on NU parameter in 21 sector
- Determine the sensitivity limit of these experiments in determining NU parameter.

1. Introduction

- The flavor state of neutrino produced in the weak interaction, $|\nu_{\alpha}\rangle = \sum U_{\alpha i} |\nu_{i}\rangle$ can change its flavor as it propagates.
- The three flavor neutrino oscillation paradigm has become the most accepted theoretical model to explain the phenomenon of neutrio oscillation.
- In this model, the mixing matrix is unitary and it's standard parametrization is given by $U_{PMNS} = R(\theta_{23})V(\theta_{13}, \delta_{CP})R(\theta_{12})$
- Neutrino oscillation implies that neutrinos are massive. To explain massive neutrino, the extended theoretical models require additional sterile neutrinos.
- Short baseline anomalies are also point towards existence of sterile neutrino.
- If such neutrinos exist in nature, then they can mix with active neutrinos.
- light sterile neutrino (eV scale) : can be probed via Oscillation physics.
- Heavy sterile neutrino (within TeV scale): can be probed by looking at the deviation from the unitarity of PMNS mixing matrix ⇒ Non-unitary (NU) neutrino mixing. As in presence of such neutrino the active neutrino mixing matrix is no more unitary.
- The goal of this work is to study NU mixing at T2K, T2HK and T2HKK experiment.

2. Neutrino oscillation with non-unitary neutino mixing

• In presence of heavy sterile neutrino, the effective neutrino mixing matrix is of the form

$$U_{eff} = \begin{pmatrix} N_{3 \times 3} \ R \ S \end{pmatrix},$$

where $N_{3\times3}$ is the non-unitary ν_a mixing

$$N = (1 - \frac{1}{2}\Theta^{\dagger}\Theta)U_{\text{PMNS}} = (1 - \eta)U_{\text{PMNS}},$$

which yields $\eta = \frac{1}{2}\Theta^{\dagger}\Theta$.

• The Hamiltonian in standard paradigm is given by

$$\mathcal{H}_{m} = rac{1}{2E} egin{pmatrix} 0 & 0 & 0 & 0 \ 0 & \Delta m_{21}^{2} & 0 \ 0 & 0 & \Delta m_{31}^{2} \end{pmatrix} + U_{\mathrm{PMNS}}^{\dagger} egin{pmatrix} V_{\mathrm{CC}} + V_{\mathrm{NC}} & 0 & 0 \ 0 & V_{NC} & 0 \ 0 & 0 & V_{NC} \end{pmatrix} U_{\mathrm{PMNS}}$$

with $\Delta m_{ij}^2 = m_i^2 - m_j^2$, $V_{CC} = \sqrt{2}G_F n_e$ and $V_{NC} = -G_F n_n / \sqrt{2}$.

• In presence of non-unitary lepton mixing, Hamiltonian gets modified as

$$\mathcal{H}_{m}^{N} = rac{1}{2E} egin{pmatrix} 0 & 0 & 0 & 0 \ 0 & \Delta m_{21}^{2} & 0 \ 0 & 0 & \Delta m_{31}^{2} \end{pmatrix} + \mathbf{N}^{\dagger} egin{pmatrix} V_{\mathrm{CC}} + V_{\mathrm{NC}} & 0 & 0 \ 0 & V_{\mathrm{NC}} & 0 \ 0 & 0 & V_{\mathrm{NC}} \end{pmatrix} \mathbf{N}.$$

Oscillation probability,

$$P_{\alpha\beta}(E,L) = |\langle
u_{eta} |
u_{lpha}(L) |^2 = \left| \left(N e^{-i\mathcal{H}_m^N L} N^{\dagger} \right)_{eta lpha} \right|^2.$$

4.Results

Fig1: Sensitivity to exclude

NU mixing

Fig2: The bounds on NU parameter. The left, middle, and right panels are respectively for T2K, T2HK, and T2HKK.

3. Simulation details

Expt	L	Е	Fiducial	POT	Normalization	
	(km)	(GeV)	volume (kt)	$(10^{21}) (\nu : \bar{\nu})$	error	
T2K	295	0.6	22.5	7.8 (1:1)		
T2HK	295	0.6	187	27 (1:3)	uncorrelated 5% (10%) error	
T2HKK	295 (JD)	0.6	187	27 (1:3)		
	1100 (KD)	0.6	187		on signal (background)	

Simulated all the experiments using GLoBES and implemented NU mixing using MonteCUBES

Parameters	$\sin^2 \theta_{12}$	$\sin^2 2\theta_{13}$	$\sin^2 \theta_{23}$	Δm_{21}^2	Δm^2_{atm} NH (IH)	δ_{CP}
Best fit	0.307	0.085	0.5	$7.4 \times 10^{-5} \text{ eV}^2$	$2.5(-2.4) \times 10^{-3} \text{ eV}^2$	-90°

The values of neutrino oscillation parameters used in the analysis[2].

5. Conclusions

- It is found that T2HK can establish unitarity of active neutrino mixing at above 2σ C.L. irrespective of neutrino mass hierarchy and true value of δ_{CP} .
- It is found that the bounds on $(\alpha_{21}/2)$ are 0.028, 0.0026, 0.005 at 2σ C.L. respectively for T2K, T2HK, and T2HKK.
- it is also found that the sensitivity limit of T2HK on NU parameter is far better than that of both T2HKK and T2K.

Acknowledgements

Author would like to thank the Science and Engineering Research Board (SERB) for the funding under National Post-Doctoral Fellowship (NPDF) scheme [PDF/2019/003346].

References

- [1] C. Soumya, [arXiv:2104.04315 [hep-ph]].
- [2] I. Esteban, M. C. Gonzalez-Garcia, A. Hernandez-Cabezudo, M. Maltoni and T. Schwetz, JHEP **01**, 106 (2019), [arXiv:1811.05487 [hep-ph]]., NuFIT 4.0 (2018), www.nu-fit.org.
- [3] P. Huber, M. Lindner, T. Schwetz and W. Winter, 044, [arXiv:0907.1896 [hep-ph]].
- [4] M. Blennow and E. Fernandez-Martinez, Comput. Phys. Commun. 181, 227 (2010), arXiv:0903.3985 [hep-ph].