

Constraining CPT violation with Hyper-Kamiokande and ESSnuSB

Dinesh Kumar Singha¹, Rudra Majhi¹, K. N. Deepthi², Rukmani Mohanta¹

dinesh.sin.187@gmail.com, rudra.majhi95@gmail.com, nagadeepthi.kuchibhatla@mahindrauniversity.edu.in, rukmani98@gmail.com

1 School of Physics, University of Hyderabad, India. 2 Department of Physics, Mahindra University, Hyderabad, India.

Abstract

- ► It is expected that the neutrino experiments can provide more stringent bound on CPT invariance violation than the existing bounds from the kaon sector.
- ► Future long-baseline experiments will play a crucial role in understanding the CPT symmetry of the universe.
- ► We investigated the sensitivities of Hyper-Kamiokande (T2HK and T2HKK), ESSnuSB and DUNE to constrain the CPT violating parameters.

Introduction

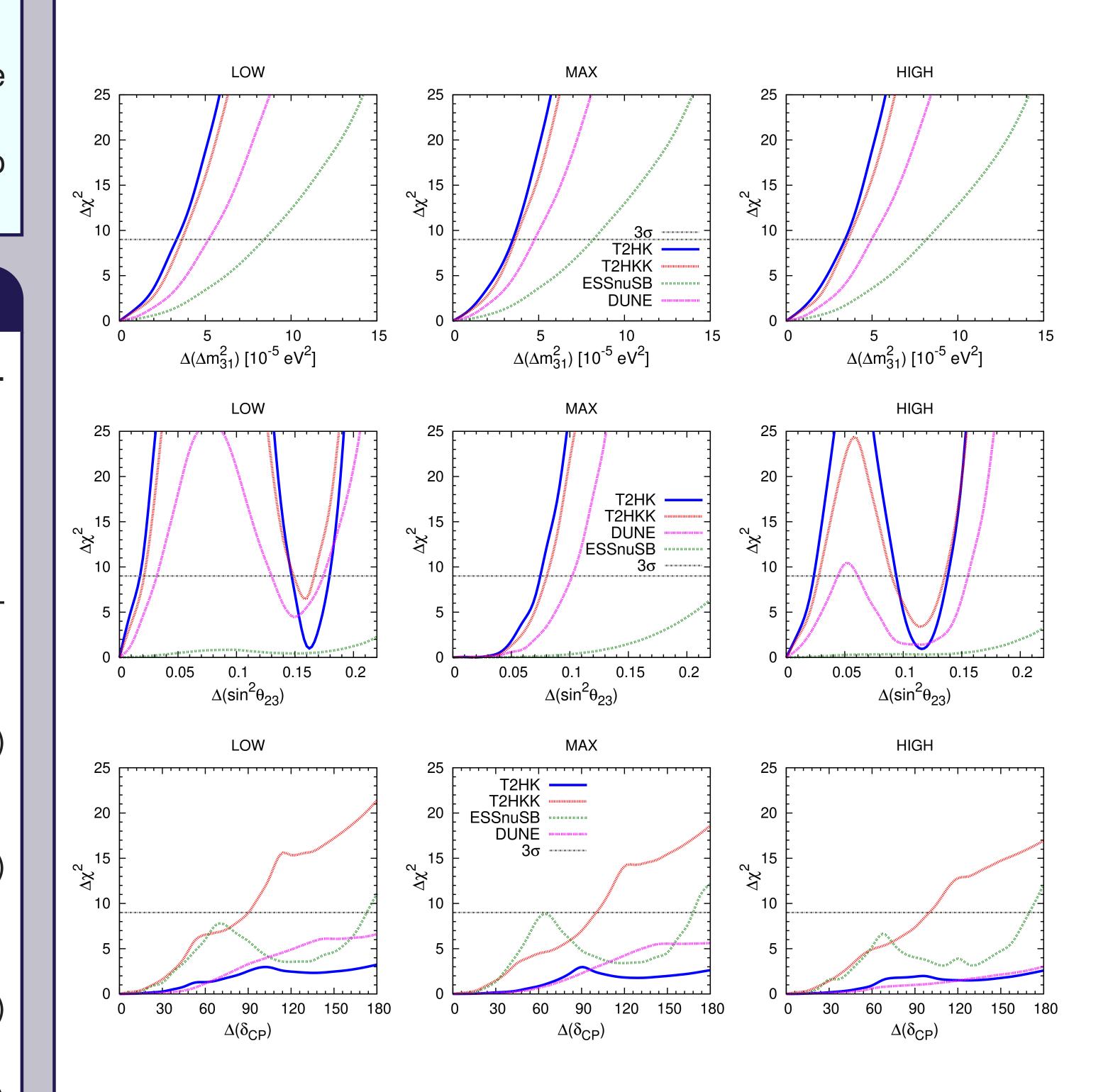
- ightharpoonup Simultaneous transformation of Charge conjugation, Parity and Time reversal \implies CPT Transformation.
- ► SM is invariant under Lorentz or CPT symmetry.
- ightharpoonup CPT theorem \implies particles and anti-particles will have same mass and life-time.
- ► Till now no conclusive evidence for CPT violation is found in any experiment.
- ► Neutrino sector has the potential to provide stringent bound on CPT invariance violation.
- ► If the CPT symmetry is not invariant, we need two different sets of parameters for neutrinos and antineutrinos.

$$|\nu_{\alpha}\rangle = \sum_{i=1}^{3} U_{\alpha i}(\theta_{12}, \theta_{13}, \theta_{23}, \delta_{CP})|\nu_{i}\rangle . \tag{1}$$

$$|\overline{\nu}_{\alpha}\rangle = \sum_{i=1}^{3} U_{\alpha i}^{*}(\overline{\theta}_{12}, \overline{\theta}_{13}, \overline{\theta}_{23}, \overline{\delta}_{CP})|\overline{\nu}_{i}\rangle . \qquad (2)$$

► CPT violating parameters in neutrino sector that we are considering for this study

$$\Delta(\delta_{CP}) = |\delta_{CP} - \overline{\delta}_{CP}| \tag{3}$$


$$\Delta(\Delta m_{31}^2) = |\Delta m_{31}^2 - \Delta \overline{m}_{31}^2| \tag{4}$$

$$\Delta(\sin^2\theta_{23}) = |\sin^2\theta_{23} - \sin^2\overline{\theta}_{23}| \tag{5}$$

Simulation Details

- In this work, we obtained the bound on CPT violation in Δm_{31}^2 , $\sin^2\theta_{23}$ and δ_{CP} in the upcoming Hyper-Kamiokande (T2HK and T2HKK), European Spallation Source ν -Beam (ESSnuSB) and Deep Underground Neutrino Experiment (DUNE).
- ► We used *GLoBES* package to simulate these experiments.
- ► *ESSnuSB* $(2\nu + 8\overline{\nu})$: POT = 27×10^{22}
- ► *T2HK and T2HKK (*1 ν + 3 $\overline{\nu}$): POT = 27 × 10²¹
- ► *DUNE* $(5\nu + 5\overline{\nu})$: POT = 10×10^{21}

Results and Conclusion

- ► T2HK and T2HKK are giving better bounds on $\Delta(\Delta m_{31}^2)$ than ESSnuSB and DUNE.
- In the second row, Higher and lower octants plots are showing degeneracies.
- For maximal θ_{23} , the CPT violation senitivity of all the experiments increses with the increse of $\Delta(\sin^2\theta_{23})$ value.
- ► ESSnuSB \rightarrow very low sensityvity to $\Delta(\sin^2\theta_{23})$ for all values of θ_{23} .
- ► $T2HKK \rightarrow \Delta(\delta_{CP}) < 100^{\circ}$ at 3σ C.L.

- **►** Conclusion:
- ► T2HKK and ESSnuSB are quite sensitive to δ_{CP} .
- T2HK, T2HKK and DUNE are sensitive to atmospheric mixing parameters.
- ► T2HK gives most stringent limits on $\Delta(\Delta m_{31}^2)$ and $\Delta \sin^2 \theta_{23}$.
- ► *T2HKK* will provide best bound on $\Delta(\delta_{CP})$.

References

Reference:

- [1] G. Luders, Ann. Phys. (NY) 2 (1957), 1.
- [2] V. A. Kostelecky and M. Mewes, Phys. Rev. D 70, 031902 (2004),hep-ph/0308300.
- [3] G. Barenboim, C. A. Ternes and M. Tórtola, Phys. Lett. B **780** (2018), 631-637 doi:10.1016/j.physletb.2018.03.060 [arXiv:1712.01714 [hep-ph]].