

# Reactor Antineutrino Spectrum and Flux Measurement at Daya Bay

Roberto Mandujano, University of California, Irvine ♦ rcmanduj@uci.edu (on behalf of the Daya Bay collaboration)



# 1. Daya Bay Reactor Neutrino Experiment [1]

- Located in Southern China next to 6 x 2.9 GWth reactors providing large  $\bar{\nu}_{\rho}$  flux
- Primarily designed to precisely measure neutrino mixing angle  $\theta_{13}$
- 8 identically-designed antineutrino detectors (ADs) distributed in three experimental halls (EHs) up to 330 m underground for cosmic ray attenuation



Daya Bay AD cross section



Daya Bay EHs and power plant locations

~8 MeV

Figure of IBD detection process

#### 2. Antineutrino Production and Detection [1,2]

- Reactor antineutrinos come from beta decays, product of mainly <sup>235</sup>U, <sup>239</sup>U, <sup>239</sup>Pu, <sup>241</sup>Pu fissions
- $\bar{\nu}_{e}$  detected through Inverse Beta Decay (IBD):  $\bar{\nu}_e + p \rightarrow e^+ + n$
- e<sup>+</sup> loses energy then quickly annihilates with  $e^-$  providing the prompt signal
- n gets captured on Gd or H, when nucleus de-excites we see the delayed signal
- IBD signature is the coincidence of the two signals
- Poster results include capture on Gd IBD sample only

$$E_{\bar{\nu}_e} \approx E_{prompt} + 0.78 MeV$$
 IBD detection efficiency Survival Probability Sum over 4 detectors and 6 reactors 
$$N_{IBD}(1-c^{SNF}) = \sigma_f \sum_{d=1}^{4} \sum_{r=1}^{6} \frac{N_d^P \epsilon_{IBD} P_{sur}^{rd} N_r^f}{4\pi L_{rd}^2}$$
 Number of protons in Contraction of the protons in the property of protons in the property of protons in the proton in the

 Largest uncertainty on previous yield measurement was ε<sub>IBD</sub> (1.69% out of 2.1% total relative uncertainty) **Neutron Detection Efficiency** 

$$\epsilon_{IBD} = \epsilon_n \times \epsilon_{other}$$

### 3. Neutron Detection Efficiency Improvement [2]

- ε<sub>n</sub> dominates total yield uncertainty, factors contributing to  $\varepsilon_n$  can be constrained using neutron source measurements
- Special calibration campaign deploying different sources in detector performed in late 2016



En reduced by a factor of 2!

# 4. Yield Results [2,3]

<u>:</u>£ 5.95∤

ម 5.85<sup>]</sup>

 Total antineutrino yield  $\sigma_f = (5.91 \pm 0.09) \times 10^{-43}$ from 1230 day data set agrees with world average, and deviates from Huber-Mueller (H-M) [4,5] model prediction



• <sup>235</sup>U and <sup>239</sup>Pu isotopic yields are extracted from measurement of total yield as a function of effective fission fraction

• Data favors <sup>235</sup>U as main

contributor to reactor

antineutrino anomaly

hypothesis, needed for

Equal isotope deficit

 $2.8\sigma$ 



<sup>235</sup>U, <sup>239</sup>Pu and H-M yields with allowed regions



Distance [m]



- Converts spectra from prompt energy to  $\bar{\nu}_{e}$  energy
- Isotopic spectra uncertainties dominated by statistics and model uncertainties
- Data-driven prediction for other experiments with different fission fractions to 2% precision



- Full spectral shape from 1958 days data deviates from H-M model
- Main feature is a ~5 MeV "bump"
- Local disagreement of 6.3σ between 4-6 MeV
- Global discrepancy significance of 5.3σ
- <sup>235</sup>U and <sup>239</sup>Pu spectra are extracted from evolution of total spectrum as a function of effective fission fraction
- First extraction of isotopic spectra from a commercial reactor
- Both spectra exhibit ~5 MeV bump











#### References

- [1] F.P. An et al, Nucl.Instrum.Meth.A 811, (2016) 133-161
- [2] D. Adey et al, Phys. Rev. D **100**, (2019) 052004
- [3] F.P. An et al, Phys. Rev. Lett. **118**, (2017) 251801
- [4] P. Huber, Phys. Rev. C 84, (2011) 024617
- [5] Th. A Mueller et al, Phys. Rev. C 83, (2011) 054615
- [6] D. Adey et al, Phys. Rev. Lett. **123**, (2019) 111801
- [7] F.P. An et al, arXiv:2102.04614