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1. Daya Bay Reactor Neutrino Experiment [1] 

• Located in Southern China next to 6 x 2.9 GWth reactors 
providing large  flux


• Primarily designed to precisely measure neutrino mixing 
angle  


• 8 identically-designed antineutrino detectors (ADs) 
distributed in three experimental halls (EHs) up to 330 m 
underground for cosmic ray attenuation
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3. Neutron Detection Efficiency Improvement [2] 

• εn dominates total yield 
uncertainty, factors 
contributing to εn can be 
constrained using neutron 
source measurements


• Special calibration 
campaign deploying 
different sources in detector 
performed in late 2016
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Relative Uncertainties on Yield
Source Previous This Work
statistic 0.1% 0.1%
oscillation 0.1% 0.1%
target proton 0.92% 0.92%
reactor 0.89% 0.89%
✏n 1.69% 0.74%
✏other 0.16% 0.16%
total 2.1% 1.5%
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2. Antineutrino Production and Detection [1,2] 

• Largest uncertainty on previous yield measurement was εIBD 
(1.69% out of 2.1% total relative uncertainty)


• Reactor antineutrinos come from 
beta decays, product of mainly 
235U, 239U, 239Pu, 241Pu  fissions


•  detected through Inverse Beta 
Decay (IBD): 


•  loses energy then quickly 
annihilates with  providing the 
prompt signal


•  gets captured on Gd or H, 
when nucleus de-excites we see 
the delayed signal


• IBD signature is the coincidence 
of the two signals


• Poster results include capture on 
Gd IBD sample only


•
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5. Spectrum and Data-based Predictions [2,6,7] 
• Full spectral shape from 1958 

days data deviates from H-M 
model 


• Main feature is a ~5 MeV 
“bump”


• Local disagreement of 6.3σ  
between 4-6 MeV


• Global discrepancy 
significance of 5.3σ 

• 235U  and 239Pu spectra 
are extracted from 
evolution of total 
spectrum as a function of 
effective fission fraction


• First extraction of isotopic 
spectra from a 
commercial reactor


• Both spectra exhibit ~5 
MeV bump


4. Yield Results [2,3] 

235U , 239Pu and H-M yields with 
allowed regions

• Data favors 235U as main 
contributor to reactor 
antineutrino anomaly


• Equal isotope deficit 
hypothesis, needed for 
sterile neutrino, disfavored at 
2.8σ 


• Total antineutrino yield
 

from 1230 day data set agrees 
with world average, and 
deviates from Huber-Mueller 
(H-M) [4,5] model prediction

σf = (5.91 ± 0.09) × 10−43 cm2

fission

• 235U  and 239Pu isotopic 
yields are extracted from 
measurement of total yield 
as a function of effective 
fission fraction

data
prediction

= 0.952 ± 0.014(exp) ± 0.023(model)

εn reduced by a factor of 2!

• Unfolding the spectra 
removes detector response 
and allows direct comparison 
with other experiments


• Converts spectra from 
prompt energy to  energy


• Isotopic spectra 
uncertainties dominated by 
statistics and model 
uncertainties


• Data-driven prediction for 
other experiments with 
different fission fractions to 
2% precision
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