

LIMITS ON STERILE NEUTRINO MIXING FROM A JOINT ANALYSIS OF THE MINOS/MINOS+, DAYA BAY, AND BUGEY-3 EXPERIMENTS

Introduction

The LSND experiment [1] has detected a 3.8σ excess of the expected number of $\overline{\nu}_e$ events in a $\overline{\nu}_\mu$ beam. Similar effects were observed by the MiniBooNE [2]: a 4.7 σ excess in a total number of ν_e and $\overline{\nu}_e$ events. These excess could be explained with one or more sterile neutrinos, which interact only gravitationally.

The Daya Bay Experiment

• Large statistics

The Bugey-3 Experiment

A reactor antineutrino experiment [4]

- Measures $\overline{\nu}_e$ disappearance.
- Three distances of measurement: 15, 40, 95 m.
- Nearly 120,000 $\overline{\nu}_e$ events.

The MINOS/MINOS+ Experiment

An accelerator experiment [5]

- Measures ν_{μ} and $\overline{\nu}_{\mu}$ diseppearance.
- Two detectors: near (≈ 1 km) and far (≈ 735 km).
- Detectors are sensitive to different region of sterile mass splitting.
- $16.36 \cdot 10^{20}$ protons on target to yield the NuMI ν_{μ} ($\nu_{\overline{\mu}}$) beam.

Vitalii Zavadskyi (Joint Institute for Nuclear Research), on behalf of the Daya Bay collaboration

Neutrino oscillation

- Neutrino flavor eigenstates are superposition of mass eigenstates.
- Neutrino mixing can be parameterized by the Pontecorvo-Maki-Nakagawa-Sakata matrix.
- Commonly, neutrino oscillation is parameterized by three-neutrino mixing.
- An additional state (sterile) that does not interact through weak interaction but it could mix with active states.
- A sterile state may explain the anomalous excess observed by the ν_e ν_μ ν_τ ν_s LSND and MinoBooNE experiments.

Analysis Method

 CL_s method [6] was used to produce exclusion region:

- H_0 : $\sin^2 2\theta_{14} = 0$ three neutrino mixing
- $H_1 : \sin^2 2\theta_{14} \neq 0$ four neutrino mixing
- $\Delta \chi^2 = \chi^2_{H_1} \chi^2_{H_0}$
- $CL_s = \frac{CL_{s+b}}{CL_b}$
- Exclusion rule: $CL_s < \alpha$
- $\Delta \chi^2$ has Gaussian approximation [7] (used only for the Daya Bay experiment)

Daya Bay+Bugey-3 Combination

$$P(\overline{\nu}_e \to \overline{\nu}_e) \approx 1 - \sin^2 2\theta_{14} \sin^2 \left(\frac{\Delta m_{41}^2 L}{4E}\right)$$

- Using Huber-Mueller model of $\overline{
 u}_e$ energy spectrum [8], [9].
- Daya Bay exclusion region based on 1230 days of data.
- Combination of two experiments is sensitive to $\sin^2 2\theta_{14}$ in the region

 $2 \cdot 10^{-4} \,\mathrm{eV}^2 < \Delta m_{41}^2 < 3 \,\mathrm{eV}^2$.

• No evidence of light sterile neutrino is observed.

MINOS/MINOS+ Results

 $P(\nu_{\mu} \to \nu_{\mu}) \approx 1 - \sin^2 2\theta_{23} \cos 2\theta_{24} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right) -$

- Two-detector fit method (fit near and far spectra simultaneously).
- The experiment is sensitive to $\sin^2 \theta_{24}$ in the region $10^{-4} \,\mathrm{eV}^2 < \Delta m_{41}^2 < 10^3 \,\mathrm{eV}^2.$
- Feldman-Cousins contours are consistent with CL_s contours.

(more than $2.5 \cdot 10^6$ events).

 Δm_{32}^2

 Δm_{21}^2

 Daya Bay Excluded FC 90% C.L Daya Bay Sensitivity FC 90% C

(median, 1σ and 2σ)

periments

 $P(\nu_{\mu} \rightarrow$

MINOS/MINOS+ into

 $4|U_{e4}|^2|U_{\mu4}|^2 = \sin^2 2\theta_{14} \sin^2 \theta_{24} \equiv \sin^2 2\theta_{\mu e}.$

- $\sin^2 2\theta_{\mu e}$.
- gion
- creased.

Daya Bay+Bugey-3+MINOS

• An appearance probability for the short-baseline ex-

$$(\nu_e) = 4|U_{e4}|^2|U_{\mu4}|^2\sin^2\left(\frac{\Delta m_{41}^2L}{4E}\right)$$

• Combines constrains of $\sin^2 2\theta_{14}$ from Daya Bay+Bugey-3 and constrains of $\sin^2 \theta_{24}$ from

• The largest CL_s value is taken for different combinations of $\sin^2 2\theta_{14}$, $\sin^2 \theta_{24}$ that give the same value of

Conclusion

• No evidence of light sterile neutrino is found. • Stringent limits are obtained on the $\sin^2 2\theta_{\mu e}$ in the re-

 $10^{-4} \text{ eV}^2 < \Delta m_{41}^2 < 10^3 \text{ eV}^2.$

• The LSND and MiniBooNE 99% C.L. allowed regions are excluded at 99% CL_s for $\Delta m_{41}^2 < 1.2 \text{ eV}^2$ [10]. • Tension between the ν_e appearance indications and the null results from disappearance channels is in-

References

1. Aguilar, A. et al. Phys. Rev. D 64, 112007 (2001). 2. Aguilar-Arevalo, A. A. et al. Phys. Rev. Lett. 121, 221801 (2018). 3. Cao, J. & Luk, K.-B. Nucl. Phys. B 908, 62–73 (2016). 4. Abbes, M. & et al. Nucl. Instrum. Meth. A 374, 164–187 (1996). 5. Adamson, P. & et al. Phys. Rev. Lett. 122. ISSN: 1079-7114 (2019). 6. Read, A. L. J. of Phys. G 28, 2693–2704 (2002). 7. Qian, X. et al. Nucl. Instrum. Meth. A 827, 63–78 (2016). 8. Huber, P. Phys. Rev. C 84, 024617 (2 2011). 9. Mueller, T. A. et al. Phys. Rev. C 83, 054615 (5 2011). 10. Adamson, P. & et al. *Phys. Rev. Lett.* **125**, 071801 (2020).