THEIA: An Advanced Optical Detector Concept

Andrew Mastbaum (Rutgers University), for the THEIA Collaboration

Pursuing a suite of **enabling technologies**:

WbLS: Water-Based **Liquid Scintillators**

Water with a small admixture of liquid scintillator (LS) enables combined

> Cherenkov + Scintillation measurements

Next-Generation **Photon Detectors**

NIM A 958. 162834 (2020) **Right: Dichroicon**

PRD 101, 072002 (2020)

Exploring novel photon detectors with **fast timing** and spectral sorting

Advanced Vertex Reconstruction

Fully leveraging photon information to enable tracking and particle ID

EPJC 80:416 (2020) A **broad program** of MeV-scale to GeV-scale physics:

Theia 70 kt

Theia 17 kt

visible energy, scintillation [MeV]

number of photoelectrons (scintillation)

--- Theia (17 kt

 $p \to \bar{\nu} K^+$

20

10

8 102

10¹

10

Б

100 kt-yrs

¥ 105

້ອງ 10⁻¹

30

40

Reactor BG

AtmNC BG

AtmCC BG

DSNB

DUNE 10 kt (CDR)

Long-Baseline Neutrino Oscillations

CP Violation Sensitivity

Normal Ordering

- With location at SURF and a water-based target. complementary to DUNE
- Nine-sample likelihood fit DUNE CDR levels
- Further gains possible with fast timing and WbLS-based PID

Supernova & DSNB Neutrinos

- Large-stats $\overline{\nu}_e$ IBD complementary to DUNE
- Scintillation enhances ntag for low-background ES
- Pointing <1° achievable
- Excellent DSNB potential: O(100) events in Theia100 $\rightarrow 5\sigma$ discovery in 1 year

DSNB signal after cuts

Nucleon Decay

- Very low backgrounds and low thresholds
- Tagging of sub-Cherenkov mesons (K^+) with WbLS
- Complementary to DUNE, HK searches, leading in invisible nucleon decays

Acknowledgements: The authors would like to thank the SNO+ collaboration. This material is based upon work supported by: the U.S. Department of Energy Office of Science; the U.S. Department of Energy National Nuclear Security Administration through the Nuclear Science and Security Consortium; the U.S. National Science Foundation Fundação para a Ciência e a Tecnologia (FCT-Portugal); and the Universities of California at Berkeley and Davis.

Solar Neutrinos

- energy ES channel
- ⁷Li loading and deexcitation y tag

25 kton, 5% WbLS

Neutrinoless Double-Beta Decay

Geoneutrinos & Reactor Antineutrinos

- ¹H capture tagging
- to LS detectors

• Probe CNO neutrinos and the MSW transition • 5–10% measurement of CNO achievable with a low-

• Potential highprecision CC using

• High-stats geoneutrinos complementary to KamLAND, Borexino • Low NC rates relative • Directionality potential

