## The 28th International Workshop on Weak Interactions and Neutrinos (WIN2021)



Contribution ID: 289 Type: Poster session

## Explaining the MiniBooNE Excess Through a Mixed Model of Oscillation and Decay

This talk presents a model of the electron-like excess observed by the MiniBooNE experiment comprised of oscillations involving a new mass state,  $\nu_4$ , at  $\mathcal{O}(1)$  eV and a high mass state,  $\mathcal{N}$ , at  $\mathcal{O}(100)$  MeV that decays to  $\nu + \gamma$  via a dipole interaction.

Short baseline oscillation data sets (omitting MiniBooNE appearance data) are used to predict the oscillation parameters. We simulate the production of  $\mathcal N$  along the Booster Neutrino Beamline via both Primakoff upscattering ( $\nu A \to \mathcal N A$ ) and Dalitz-like neutral pion decays ( $\pi^0 \to \mathcal N \nu \gamma$ ).

The simulated events are fit to the MiniBooNE neutrino energy and visible scattering angle data separately to find a joint allowed region at 95\% CL.

An example point in this region with coupling of  $3.6\times 10^{-7}$  GeV<sup>-1</sup>,  $\mathcal N$  mass of 394 MeV, oscillation mixing angle of  $6\times 10^{-4}$  and mass splitting of 1.3 eV<sup>2</sup> has  $\Delta\chi^2/dof$  for the energy and angular fit of 15.23/2 and 37.80/2, respectively.

**Primary author:** KAMP, Nick (MIT)

**Co-authors:** DIAZ, Alejandro (Graduate Student at MIT); Prof. ARGÜELLES DELGADO, Carlos (Harvard University); CONRAD, Janet (MIT); UCHIDA, Melissa (University of Cambridge); SHAEVITZ, Mike (Columbia

University); VERGANI, Stefano (University of Cambridge)

Presenter: KAMP, Nick (MIT)

Session Classification: Neutrino Physics Session 2

Track Classification: Neutrino Physics