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• We performed a combined analysis of constraints on first generation 
LQs, including both low energy precision observables and direct 
searches. 


• The CAA could be explained by first generation , but the size of this 
effect is too constrained by DY and the meson mixing.


• The non-resonant DY analysis of ATLAS gives stringent constraints on 
first generation LQs. The representations ,  and  
can account for the di-electron excess found in the CMS non-resonant DY 
analysis without violating other bounds. 
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Figure 4: Limits on the parameter space for the vector LQ . The region above the colored lines is excluded. 
The plots for the remaining LQ representations are given in Ref. [1]. 
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1 Introduction

• PP (gray region in Figure 4) sets coupling independent limits on the LQ 
masses.


• The excess in electron pairs found in CMS’ non-resonant DY analysis 
(yellow region in Figure 4) prefers the LQ representations , 

 and  interfering constructively with the SM. 
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(FCNCs) with down-type quarks. On the other hand, if
we choose � = ✓c, we work in the up basis in which
down-type FCNCs are induced via CKM elements while
up-type FCNCs are absent.

III. OBSERVABLES

A. Charged Semi-Leptonic Current

We use the charged current effective Hamiltonian

H`⌫
eff =

4GFp
2
VjkĈ

e⌫
jk

⇥
ūj�

µ
PLdk

⇤⇥
ē�µPL⌫e

⇤
, (11)

governing semi-leptonic transitions. The coefficients
Ĉ

e⌫
jk = C

SM
jk +C

e⌫
jk are the sum of the SM and LQ contri-

bution. The normalization is chosen such that we have
in the SM

C
SM
jk = �jk . (12)

Integrating out the LQs, we obtain the following tree-
level matching results

C
e⌫
11 =

�1p
2GF

c�c��✓

Vud
C

(3)
`q ,

C
e⌫
12 =

�1p
2GF

s�c��✓

Vus
C

(3)
`q ,

(13)

where we abbreviated c� ⌘ cos(�), s� = sin(�),
c��✓ ⌘ cos(� � ✓c) and s��✓ ⌘ sin(� � ✓c) and ne-
glected effects related to third generation quarks and
charm quarks, which would result in much weaker limits
than the bounds to be discussed now.

The d ! ue⌫̄e transitions contribute to beta decays
where the measured CKM element V

�
ud (extracted from

experiment using the SM hypothesis) is related to the
unitary CKM matrix V

L
ud of the Lagrangian (including

NP effects)

V
�
ud = V

L
ud

�
1 + C

e⌫e
11

�
. (14)

The element V
L
ud can then be converted to V

L
us applying

unitarity

��V L
us

�� =
q

1�
��V L

ud

��2 �
��V L

ub

��2 . (15)

We find

V
L
us ⇡ V

�
us +

|V �
ud|2

|V �
us|2

C
e⌫e
11 . (16)

V
�
ub is most precisely determined from super-allowed beta

decays. Following Ref. [160] we have

V
�
us = 0.2281(7) , V

�
us|NNC = 0.2280(14) , (17)

where the latter value contains the “new nuclear correc-
tions” (NNCs) proposed by Refs. [171, 172]. Since at the

moment the issue of the NNCs is not settled, we will
quote results for both determinations. This value of V �

us
can now be compared to Vus from two and three body
kaon [173] and tau decays [174]

V
Kµ3
us = 0.22345(67) , V

Ke3
us = 0.22320(61) ,

V
Kµ2
us = 0.22534(42) , V

⌧
us = 0.2195(19) ,

(18)

which are significantly lower2. This disagreement consti-
tutes the so-called Cabibbo angle anomaly.

Besides �-decays, tests of LFU in pion and Kaon de-
cays, defined at the amplitude level and normalized to
unity in the SM, result in

⇡ ! µ⌫

⇡ ! e⌫
⇡ 1� C

e⌫e
11

Vud
,

K ! (⇡)µ⌫

K ! (⇡)e⌫
⇡ 1� C12

Vus
.

(19)

This has to be compared to

K ! ⇡µ⌫

K ! ⇡e⌫

����
exp

= 1.0010± 0.0025 ,

K ! µ⌫

K ! e⌫

����
exp

= 0.9978(18) ,

⇡ ! µ⌫

⇡ ! e⌫

����
exp

= 1.0010(9) ,

(20)

from Ref. [176], Refs. [177–179] and Refs. [179–182], re-
spectively. Numerically, C

e⌫e
11 ⇡ �0.001 would signifi-

cantly improve the agreement with data. Note that ef-
fects in charged current D decays are not very constrain-
ing [183].

B. Tree-Level Neutral Current

Chiral quark-electron interactions can be constrained
from atomic parity violation experiments like APV [184,
185] and from the weak charge of the proton as measured
by QWEAK [186, 187]. The relevant effective Lagrangian
reads

Lee
eff =

GFp
2

X

q=u,d

Ĉ1q

⇥
q̄�

µ
q
⇤⇥
ē�µ�5e

⇤
, (21)

where Ĉ1q = C
SM
1q + C1q with C

SM
1u = �0.1887 and

C
SM
1d = 0.3419. Again we can express the Wilson coeffi-

2
During finalization of this article, Ref. [175] obtained a value of

|Vud|2 = 0.94805(26) which even slightly increases the disagree-

ment with Vus.
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• Tree-level neutral current: constraints from parity violation experiments 
(QWEAK and APV),  and . K → πe+e− /K → πμ+μ− K → π ν ν̄

• Cabibbo Angle Anomaly (CAA): deficit in first row CKM 
unitarity, can be explained with first generation LQs.
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fects in charged current D decays are not very constrain-
ing [183].

B. Tree-Level Neutral Current

Chiral quark-electron interactions can be constrained
from atomic parity violation experiments like APV [184,
185] and from the weak charge of the proton as measured
by QWEAK [186, 187]. The relevant effective Lagrangian
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ūj�

µ
PLdk

⇤⇥
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a small mass splitting among the SU(2)L components,
as realized for v ⌧ m,M , their contributions add up to
the total signal strength. This can be incorporated in
the analysis by choosing an “effective” value of � (origi-
nally parametrizing the branching fraction to electrons)
which can then however be bigger than 1 (e.g.

p
2 for

�
LR
2 ). Therefore, we extrapolated the � dependence of

the limits given in Refs. [199, 200] to account for these
cases.

While the bounds from SP via qg ! LQ ! ``q are
quite weak [138, 205, 206], in case of first generation
LQs much better bounds can be derived from SRP via
`q ! LQ ! `q [141, 207] using the electron PDF of
the proton [208]. Since Ref. [141] considers a simplified
setup with ue and de interactions separately we have to
adapt the limits for several of our LQ representations.
First of all, as for PP, the small mass splitting between
the SU(2)L components leads to overlapping signals (i.e.
the cross sections of the components have to be added).
In addition, we have to take into account the difference
between the up and down quark PDFs, which can be ob-
tained for the relative strength of the ue and de limits
given in Ref. [141]. Furthermore, if the LQ couples to
a lepton doublet, we must adjust the branching ratio as

it can decay to neutrinos whose signal is not included in
the analysis. Finally, for VLQs we have to correct for the
fact that, due to the Dirac algebra, the on-shell produc-
tion cross section is �VLQ = 2�SLQ +O(↵s) for equal LQ
couplings to fermions.

Limits from DY-like signatures were derived in
Ref. [138] based on the CMS search for resonant di-lepton
pairs [209], but they turn out to be less constraining than
the bounds from SRP [141]. Interestingly, the latest non-
resonant di-lepton search of ATLAS4 [210] can be used
to obtain more stringent bounds5. Here we have to take
into account that Ref. [210] assumed quark flavour uni-
versality which is not respected by most of the represen-
tations. This can be done by correcting for the fact that
at 2TeV the uu ! `

+
`
� cross section is a factor ⇡ 1.7

4
Note that in v1 and v2 of the ATLAS article a factor 2 in the

definition of the Lagranigian in Eq. (1) was missing. We thank

the ATLAS collaboration for confirming this.
5

In principle also LEP bounds on ee-qq interactions [211] could

be used to constrain first generation LQs. Even though these

limits can be directly applied for TeV scale LQs, they turn out

to be weaker compared to LHC searches and low energy precision

constraints.
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setup with ue and de interactions separately we have to
adapt the limits for several of our LQ representations.
First of all, as for PP, the small mass splitting between
the SU(2)L components leads to overlapping signals (i.e.
the cross sections of the components have to be added).
In addition, we have to take into account the difference
between the up and down quark PDFs, which can be ob-
tained for the relative strength of the ue and de limits
given in Ref. [141]. Furthermore, if the LQ couples to
a lepton doublet, we must adjust the branching ratio as

it can decay to neutrinos whose signal is not included in
the analysis. Finally, for VLQs we have to correct for the
fact that, due to the Dirac algebra, the on-shell produc-
tion cross section is �VLQ = 2�SLQ +O(↵s) for equal LQ
couplings to fermions.

Limits from DY-like signatures were derived in
Ref. [138] based on the CMS search for resonant di-lepton
pairs [209], but they turn out to be less constraining than
the bounds from SRP [141]. Interestingly, the latest non-
resonant di-lepton search of ATLAS4 [210] can be used
to obtain more stringent bounds5. Here we have to take
into account that Ref. [210] assumed quark flavour uni-
versality which is not respected by most of the represen-
tations. This can be done by correcting for the fact that
at 2TeV the uu ! `
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� cross section is a factor ⇡ 1.7
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LQs much better bounds can be derived from SRP via
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the proton [208]. Since Ref. [141] considers a simplified
setup with ue and de interactions separately we have to
adapt the limits for several of our LQ representations.
First of all, as for PP, the small mass splitting between
the SU(2)L components leads to overlapping signals (i.e.
the cross sections of the components have to be added).
In addition, we have to take into account the difference
between the up and down quark PDFs, which can be ob-
tained for the relative strength of the ue and de limits
given in Ref. [141]. Furthermore, if the LQ couples to
a lepton doublet, we must adjust the branching ratio as

it can decay to neutrinos whose signal is not included in
the analysis. Finally, for VLQs we have to correct for the
fact that, due to the Dirac algebra, the on-shell produc-
tion cross section is �VLQ = 2�SLQ +O(↵s) for equal LQ
couplings to fermions.

Limits from DY-like signatures were derived in
Ref. [138] based on the CMS search for resonant di-lepton
pairs [209], but they turn out to be less constraining than
the bounds from SRP [141]. Interestingly, the latest non-
resonant di-lepton search of ATLAS4 [210] can be used
to obtain more stringent bounds5. Here we have to take
into account that Ref. [210] assumed quark flavour uni-
versality which is not respected by most of the represen-
tations. This can be done by correcting for the fact that
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Non-resonant analyses [6]:


Electron PDF of 
proton

Figure 2: Feynman diagrams showing the high-energy search channels 
for LQs at the LHC. 


•  and  mixing: constraints on one-loop LQ contributions.D0 − D̄0 K 0 − K̄ 0

Figure 1: Feynman diagrams depicting the LQ contributions to the low energy processes  
(QWEAK),  and  mixing.   


e p → e p
K → π e+e− K 0 − K̄ 0

Direct LHC Searches

Low Energy Precision Observables

• The CAA could be explained by contributions from . However, DY 
searches as well as the meson mixing constraints exclude sizeable 
contributions  (black line in Figure 4). 


• The neutral current and meson mixing limits (blue, cyan and orange 
lines in Figure 4) depend on the angle  relating left-handed down-type 
quark flavor and mass eigenstates.

Φ3, V3

Ceν
11

β

• ATLAS’ non-resonant DY bounds (green region in Figure 4) are more 
constraining than the resonant DY searches. 

Leptoquarks (LQs) are hypothetical beyond the Standard Model (BSM) 
particles that feature tree-level quark-lepton couplings.  


They have attracted particular attention in recent years, since they can explain 
the „flavor anomalies“, deviations from SM predictions that hint at Lepton 
Flavor Universality Violation (LFUV): 


•  


•   transitions


-  


- , , 


• Muon anomalous magnetic moment (AMM):  

R(D(*)) =
Br(B̄ → D(*)τ−ν̄τ)
Br(B̄ → D(*)ℓ−ν̄ℓ)

 with ℓ = e, μ

b → sℓ+ℓ−

RK ≡
Br(B+ → K +μ+μ−)

Br(B+ → J /ψ ( → μ+μ−)K+) / Br(B+ → K +e+e−)
Br(B+ → J /ψ ( → e+e−)K+)

RK* Bϕ
s P′￼5

aμ =
gμ − 2

2

 [2]> 3σ

 [3]∼ 6σ

 [4]4.2σ

2

Field �1 �̃1 �2 �̃2 �3 V1 Ṽ1 V2 Ṽ2 V3

SU(3)c 3 3 3 3 3 3 3 3 3 3
SU(2)L 1 1 2 2 3 1 1 2 2 3
U(1)Y � 2

3 � 8
3

7
3

1
3 � 2

3
4
3

10
3 � 5

3
1
3

4
3

TABLE I: The ten possible representations of scalar and vec-
tor LQs under the SM gauge group.

II. SETUP AND MATCHING

LQs have first been classified systematically in
Ref. [167] into 10 possible representations under the SM
gauge group: five scalar and five vector ones, as listed in
Table I. The conventions are chosen such that the electric
charge Q is given by Q = 1

2Y +T3, where Y is the hyper-
charge and T3 the third component of the weak isospin.
These representations allow for couplings to SM quarks
and leptons as given in Table II. Here we did not consider
couplings to two quarks, which, together with the cou-
plings in Table II, would lead to proton decay. Note that
such couplings can be avoided (to all orders in perturba-
tion theory) by assigning baryon and/or lepton number
to the LQs. In the following, we denote the LQ masses
according to their representation and use small m for the

scalar LQs and capital M for the vector LQs.

A. Matching

We now perform the tree-level matching of our ten LQ
representations on SU(2)L gauge invariant dimension-six
four-fermion operators using the basis of Ref. [168]

L=
X

CiOi ,

O
(1)
`q = [Q̄�

µ
Q][L̄�µL] ,

O
(3)
`q = [Q̄⌧

I
�
µ
Q][L̄⌧ I�µL] ,

Oqe= [Q̄�
µ
Q][ē�µe] ,

O`u= [ū�µ
u][L̄�µL] ,

O`d= [d̄�µ
d][L̄�µL] ,

Oeu= [ū�µ
u][ē�µe] ,

Oed = [d̄�µ
d][ē�µe] ,

(1)

and find

C
(1)
`q C

(3)
`q Cqe C`u C`d Ceu Ced

�1
|�L

1 |2
4m2

1

� |�L
1 |2

4m2
1

⇤ ⇤ ⇤ |�R
1 |2

2m2
1

⇤

�̃1 ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ |�̃1|2
2m̃2

1

�2 ⇤ ⇤ � |�LR
2 |2
2m2

2

� |�RL
2 |2
2m2

2

⇤ ⇤ ⇤

�̃2 ⇤ ⇤ ⇤ ⇤ � |�̃2|2
2m̃2

2

⇤ ⇤

�3
3|�2

3|
4m2

3

|�2
3|

4m2
3
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V1 � |L
1 |2

2M2
1

� |L
1 |2

2M2
1

⇤ ⇤ ⇤ ⇤ � |R
1 |2
M2

1

Ṽ1 ⇤ ⇤ ⇤ ⇤ ⇤ � |̃1|2

M̃2
1

⇤

V2 ⇤ ⇤ |LR
2 |2
M2

2

⇤ |RL
2 |2
M2

2

⇤ ⇤

Ṽ2 ⇤ ⇤ ⇤ |̃2|2

M̃2
2

⇤ ⇤ ⇤

V3 �
3
��2

3

��
2M2

3

|2
3|

2M2
3
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(2)

in agreement with Ref. [47, 145, 148, 169]
For simplicity, we do not include flavor indices, since we

will only consider couplings to first generation fermions
(in the weak basis). Furthermore, we assume that �1, �2,

• We consider the complete set of LQ interactions with first generation 
quarks and leptons. 

Table 2: The ten possible LQ representations 

(  with spin ,  with ) under the SM gauge 
group. 
Φ S = 0 V S = 1

Table 1: Interaction terms with the first-generation 
SM quarks ( ) and leptons ( ).Q , u , d L , e

3

L e

Q̄ 
L
1 �µV

µ
1 + 3�µ (⌧ · V µ

3 ) �
LR
2 �2

d̄ �̃2�̃
T
2 i⌧2 

R
1 �µV

µ
1

ū �
RL
2 �T

2 i⌧2 ̃1�µṼ
µ
1

Q̄
c
�3i⌧2(⌧ · �3)

† + �
L
1 i⌧2�

†
1 

LR
2 �µV

µ†
2

d̄
c


RL
2 �µV

µ†
2 �̃1�̃

†
1

ū
c

̃2�µṼ
µ†
2 �

R
1 �

†
1

TABLE II: Interaction terms of the LQ representations listed
in Table I, where Q and L represent the left-handed quark and
lepton SU(2)L doublets, e, d and u the right-handed SU(2)L
singlets, the superscript c stands for charge conjugation and
⌧i are the Pauli matrices.

V1 and V2 possess only one of the two possible couplings
at the same time. Therefore, no scalar or tensor operators
are generated, where the former ones are very stringently
constrained from ⇡ ! e⌫.

Let us now consider the one-loop matching on four-
quark operators [170] involving only left-handed fields:

Q
(1)
qq =

⇥
Q̄�

µ
Q
⇤⇥
Q̄�µQ

⇤
, (3)

Q
(3)
qq =

⇥
Q̄⌧

I
�
µ
Q
⇤⇥
Q̄⌧

I
�
µ
Q
⇤
, (4)

where the color indices are contracted within each bilin-
ear and the Wilson coefficients are given by

�1 : C
(1)
qq =

�|�L
1 |4

256⇡2m2
1

, C
(3)
qq =

�|�L
1 |4

256⇡2m2
1

, (5a)

�2 : C
(1)
qq =

�|�LR
2 |4

128⇡2m2
2

, (5b)

�3 : C
(1)
qq =

�9|�3|4
256⇡2m2

3

, C
(3)
qq =

�|�3|4
256⇡2m2

3

, (5c)

V1 : C
(1)
qq =

�|L
1 |4

32⇡2M2
1

, (5d)

V2 : C
(1)
qq =

�|LR
2 |4

32⇡2M2
2

, (5e)

V3 : C
(1)
qq =

�3|3|4
32⇡2M2

3

, C
(3)
qq =

�|3|4
16⇡2M2

3

. (5f)

Due to SU(2)L, these operators will necessarily give rise
to K

0 � K̄
0 and/or D

0 � D̄
0 mixing after electroweak

symmetry breaking. For the vector LQs we calculated the
diagrams in Feynman gauge, i.e. neglecting Goldstone
contributions. In this way a finite result is obtained and
the estimate is conservative in the sense that the NP
contribution obtained is smaller than (the finite part of)
the one in unitary gauge where large logarithms involving
the cut-off appear [53].

B. Electroweak Symmetry Breaking

For left-handed quarks “first generation” is only well
defined in the interaction basis as after electroweak
symmetry breaking non-diagonal mass matrices for the
quarks are generated. In order to work in the physical
basis with diagonal mass terms, we have to rotate the
quark fields1

dL,f ! U
dL
fi dL,i ,

dR,f ! U
dR
fi dR,i ,

uL,f ! U
uL
fi uL,i ,

uR,f ! U
uR
fi uR,i ,

(6)

with the unitary matrices U
uL,R and U

dL,R . While the
right-handed rotations can be absorbed by a re-definition
of the couplings and are thus unphysical, the left-handed
ones form the Cabibbo-Kobayashi-Maskawa (CKM) ma-
trix

Vfi ⌘ U
uL⇤
jf U

dL
ji . (7)

As we want to study first generation LQs (defined in the
weak basis), and flavor violating effects involving first
and second quark generation quarks are most stringently
constrained, we can focus on the 2 ⇥ 2 sector which is
related to the relatively large Cabibbo angle ✓c ⇡ 0.22.
We can thus parameterize the matrices in Eq. (6) as

U
uL =

 
cos(↵) sin(↵)

� sin(↵) cos(↵)

!
,

U
dL =

 
cos(�) sin(�)

� sin(�) cos(�)

!
.

(8)

Using Eq. (7) this yields

V =

 
cos(� � ↵) sin(� � ↵)

� sin(� � ↵) cos(� � ↵)

!
(9a)

!
=

 
cos(✓c) sin(✓c)

� sin(✓c) cos(✓c)

!
. (9b)

Hence, we can write

U
uL =

 
cos(� � ✓c) sin(� � ✓c)

� sin(� � ✓c) cos(� � ✓c)

!
. (10)

If � = 0, we work in the so-called down basis where no
CKM elements appear in flavor changing neutral currents

1
The same is true for charged leptons. However, in the limit of

vanishing neutrino masses all rotation necessary to diagonalize

the charged lepton mass matrix are unphysical since they can be

absorbed into a field redefinition.

RXRXkX *?�`;2 Ykfj
h?2 62vMK�M `mH2b 7Q` i?2 BMi2`�+iBQMb #2ir22M i?2 bBM;H2i H2TiQ[m�`F }2H/b rBi? 2H2+i`B+
+?�`;2 Q = +2

3 �M/ i?2 ai�M/�`/ JQ/2H 72`KBQMb �`2 UQKBiiBM; i?2 +QHQ` BM/B+2b iQ BK@
T`Qp2 H2;B#BHBivVX

62vMK�M .B�;`�Kb
UBM+QKBM; }2H/bV 62vMK�M _mH2b

�+2/3
2

ed̄

+ iS_
�
V *EJ

ki

�⇤
Y G_
2 kj

�
W+2/3

�†
1a

� iSG Y _G
2̃ ij

�
W+2/3

�†
2a

�̂�2/3
a

dj¯̀
i

+ iS_
�
V *EJ

ki

�⇤
Y G_
2 kj

�
W+2/3

�†
1a

� iSG Y _G
2̃ ij

�
W+2/3

�†
2a

�̂+2/3
a

⌫jūi
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FIG. 3: Limits on the parameter space of first generation vector LQs. The regions above the colored lines are excluded. The
1� and 2� regions that are preferred by the CMS measurement are shown in yellow. While LHC limits and the bounds from
parity violation are to a good approximation independent of � (for � = O(✓c)) the bounds from kaon and D decays depend
on it. We consider the two scenarios � = ✓c or � = 0. In the first case, the kaon limits arise for LQ representations with
left-handed quark fields while in the second case these limits are absent but bounds from D

0 � D̄
0 arise.

Figure 3: Ratio  for 


given as a function of the invariant di-lepton mass . The CMS measurements 
(black and gray points) prefer the LQ fits (colored lines) over the SM solution (black 
line at 1.0) [1]. 
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ē

LQK+ ⇡+

R

62vMK�M .B�;`�Kb
Gm+ a+?M2HH

CmM2 k- kykR

R G2TiQ[m�`Fb
RXR J2bQM JBtBM;

q q0

q̄0 q̄

LQ

LQ

e/⌫ e/⌫M0 M̄0

RXk Zr2�F 1tT2`BK2Mi

u u
u u
d d

e e

LQ

p+ p+

RXj E�QM .2+�vb
u u

s̄ d̄

e

ē
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