

ATLAS measurements of CP violation and rare decay processes with beauty mesons WIN2021, 7th-12th June

This poster will focus on the latest results from the ATLAS collaboration, in particular for rare processes $B_{(s)}^0 \rightarrow \mu^+ \mu^-$, and CP violation in the $B_s^0 \rightarrow J/\psi \phi$ decays. In the latter, the Standard Model predicts the CP violating mixing phase, ϕ_s , to be very small and its SM value is very well constrained, while in many new physics models large ϕ_s values are expected. Latest measurements of ϕ_s and several other parameters describing the $B_s^0 \rightarrow J/\psi \phi$ decays will be reported.

Measurement of the CP violation phase ϕ_s

Introduction

- ► $B_s^0 \rightarrow J/\psi(\mu^+\mu^-)\phi(K^+K^-)$ is used to measure the CPviolating phase ϕ_s which is potentially sensitive to new physics.
- → ϕ_s is defined as the weak phase difference between the
 $B_s^0 \bar{B}_s^0$ mixing amplitude and the b → cc̄s decay
 amplitude.
- ► In standard model (SM), $\phi_s \simeq 2 \arg \left[-\frac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*} \right] = -0.03696^{+0.00072}_{-0.00082} rad$

Strategy

Time-dependent angular analysis with flavour tagging technique

➢ Efficiency (ε), dilution (D), tagger power (T)
 ➢ An unbinned maximum likelihood fit

Results

Tag method	ϵ_x [%]	D_x [%]	T_x [%]
Tight muon	4.50 ± 0.01	43.8 ± 0.2	0.862 ± 0.009
Electron	1.57 ± 0.01	418 ± 0.2	0.274 ± 0.004

 $B^0_{(s)} \rightarrow \mu^+ \mu^-$ High precision SM predictions of branching fractions for muonic $B^0_{(s)}$ decays:

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.66 \pm 0.14) \times 10^{-9}$$

 $\mathcal{B}(B^0 \to \mu^+ \mu^-) = (1.03 \pm 0.05) \times 10^{-10}$

ATLAS results

Branching fractions are measured relative to the reference decay mode $B^+ \rightarrow J/\psi(\mu^+\mu^-)K^+$ which is abundant and well-measured:

$$\mathcal{B}\left(B_{(s)}^{0} \to \mu^{+}\mu^{-}\right) = \frac{N_{d(s)}}{\varepsilon_{\mu^{+}\mu^{-}}} \times \left[\mathcal{B}(B^{+} \to J/\psi K^{+}) \times \mathcal{B}(J/\psi \to \mu^{+}\mu^{-})\right] \frac{\varepsilon_{J/\psi K^{+}}}{N_{J/\psi K^{+}}} \times \frac{f_{\mu}}{f_{d(s)}}$$

		J/ 4 ···	, (())
	Source	$B_{s}^{0} \ [\%]$	$B^0 ~[\%]$
	f_s/f_d	5.1	
	B^+ yield	4.8	4.8
	$R_{arepsilon}$	4.1	4.1
	$ \left \mathcal{B}(B^+ \to J/\psi K^+) \times \mathcal{B}(J/\psi \to \mu^+ \mu^-) \right. $	2.9	2.9
	Fit systematic uncertainties	8.7	65
_	Stat. uncertainty (from likelihood est.) 27	150
1			

 $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (2.8 \pm 0.7) \times 10^{-9}$ $\mathcal{B}(B^0 \to \mu^+ \mu^-) = (-1.9 \pm 1.6) \times 10^{-10}$

JHEP 04 (2019) 098

Combination

- Three binned lo—likelihoods fitted using a twodimensional variable-width Gaussian
- The maximum is used the evaluate the central values and the uncertainties:

Yue Xu (Tsinghua University), on behalf of the ATLAS Collaboration

