NEW RADIATION-HARD SCINTILLATORS FOR FCC DETECTORS

Yasar Onel – The University of Iowa, Iowa City, IA Burak Bilki – Beykent University, Istanbul, Turkey

Motivation for Radiation-Hard Scintillator and WLS Fiber Development

Future and upgrade colliders impose unprecedented challenges on the radiationhardness of the active media of the calorimeters. Scintillators play a central role as the active medium of calorimeters.

Intrinsically Rad-Hard Scintillators

Commercially Available Scintillating Materials:

- Polyethylene Naphthalate (PEN)
- Polyethylene Terephthalate (PET)

PEN:

✓ Intrinsic blue scintillation (425 nm)

PET:

- \checkmark A common type polymer
- ✓ Plastic bottles and as a substrate in thin film solar cells.
- ✓ Emission spectrum of PET peaks at 385 nm [Nakamura, 2013]

Intrinsically Rad-Hard Scintillators

HEM/ESR: sub-μm film stack of Poly(Ethylene-2,6-Naphthalate)/PEN, polyester, polyethylene terephthalate (PET): *intrinsic blue scintillation*! 425 nm; 10,500 photons/MeV;

A LETTERS JOURNAL EXPLORING THE FRONTIERS OF PHYSICS

EPL, 95 (2011) 22001 doi: 10.1209/0295-5075/95/22001 July 2011

www.epljournal.org

Evidence of deep-blue photon emission at high efficiency by common plastic

H. NAKAMURA^{1,2(a)}, Y. SHIRAKAWA², S. TAKAHASHI¹ and H. SHIMIZU³

Material	Polyethylene naphthalate	Organic scintillator (ref. [14])	Plastic bottle (ref. [13])
Supplier	Teijin Chemicals	Saint-Gobain	Teijin Chemicals
Base	$(C_{14}H_{10}O_4)_n$	$(C_9H_{10})_n$	$(C_{10}H_8O_4)_n$
Density	$1.33 \mathrm{g/cm^3}$	$1.03 {\rm g/cm^3}$	$1.33 {\rm g/cm^3}$
Refractive index	1.65	1.58	1.64
Light output	$\sim 10500 \text{ photon/MeV}$	10000 photon/MeV	$\sim 2200 \text{ photon/MeV}$
Wavelength max. emission	$425\mathrm{nm}$	$425\mathrm{nm}$	$380\mathrm{nm}$

Table 1: Properties of the three samples used in the present study.

Intrinsically Rad-Hard Scintillators - PEN

100 MRad (1 MGy) Radiation Resistance!

N. Belkahlaa et al., Space charge, conduction and photoluminescence measurements in gamma irradiated poly (ethylene-2,6-naphthalate) Rad. Physics & Chem, V101, August 2014

Abstract: Polyethylene naphthalate (PEN) thin films were subjected to gamma rays at different doses and changes in both the dielectric and photophysical properties were investigated. Samples were irradiated in air at room temperature by means of a 60Co gamma source at a dose rate of \sim 31 Gy/min. Total doses of 650 kGy(344 h) & 1023 kGy(550 h) were adopted. The high radiation resistance of PEN film is highlighted.

PL intensity at peak maximum (relative units) versus irradiation dose,

Excitation wavelength	Reference-PEN	650 kGy	1023 kGy
$\lambda_e = 270 \text{ nm}$	1	0.98	0.95
$\lambda_e = 370 \text{ nm}$	1	0.98	0.96

Laboratory Measurements

Beam Test Results

PET \rightarrow Light yield MPV 20 fC

• PET is faster but emits less light. PEN is radiation resistant up to 10 Mrad and it has a significant light yield but it is too slow.

PEN Performance in Beam Measurements

We tested 2 - 4 mm thick PEN and PET tiles read out with green wavelength shifting fibers with 150 GeV muons.

New SiX Scintillators

• The scintillators have a base material, primary fluor, and secondary fluor.

• The main scintillation comes from the primary fluor.

• The secondary fluor, or waveshifter, absorbs the primary's emissions and reemits to a wavelength that is desirable for optimum efficiency.

SiX Production Grooved Tiles

Finger Tiles

Modified Oven

Control Circuits

Scintillator-X response to 150 GeV muons SiPM directly coupled to dimple (Hamamatsu S12572-010) Tile size 3 cm x 3 cm

Select the muons passing through the tile and 1 mm away from the SiPM

SiX in Test Beam

Tests with Direct PMT Coupling

- Tiles tested: clean quartz, PEN and SiX-1
- Beam: Fermilab 120 GeV proton beam
- Readout: Hamamatsu R7600U-200 directly coupled to the edge → Scope

Clean Quartz

Single tile with reflective

5 tiles with no wrapping

5 tiles with individual reflective wrappings

1 mm clean quartz tiles

SiX-1

Small sample: 2 cm x 3 cm x 6 mm

The edge coupling the PMT is polished.

No reflective wrapping.

FW @ 1/10 ~ 15 ns

Radiation Tests

New SiX Scintillators

Lose only 7 % transmission after 40 Mrad proton radiation

Figure 3: The transmission before and after irradiation;

New "SiX" Scintillators

Almost no change on emission and absorption after irradiation

Figure 3: The excitation/emission taken before and after irradiation

PEN Radiation Damage Studies (MSU)

Facilities:

- National Superconducting Cyclotron Laboratory
- Used ⁶⁰Co, 1.33 MeV Gammas

Two Samples:

- -1.7 MRad in Air
- -10 MRad in N₂

	Undamaged	10 MRad N2	1.7 MRad Air
Integral (300-450 ns)	20208	19012	17311
Relative % (damaged / Undamaged)	100%	94.1%	85.7%

Transmission

Radiation Damage Studies (Iowa)

JINST 11, P08023, 2016

Summary of irradiation results

Initial damage

Permanent damage

Time for Recovery

• PET was damaged more than PEN initially

• Permanent damage was same at 14 MRad

• PEN was recovered in 5 days only and PET in 25 days – so slow

JINST 11, P08023, 2016

LED Stimulated Recovery

Can we stimulate the recovery of scintillators damaged from radiation?

✓ By using an array of tri-color red, blue, green (RGB) LEDs

Different Materials:

- Eljen brand EJ-260 (N) and overdoped version EJ2P.
- Lab produced plastic scintillator (SiX)

LED Stimulated Recovery

Very useful to implement on the on-detector electronics!

NIM B395, 13, 2017

are affected very little.

Conclusions

• The options of intrinsically radiation-hard scintillators are being expanded with the addition of Scintillator-X. Different variants of Scintillator-X should be probed.