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Dark Matter Annihilating into neutrinos

e Dark matter annihilation is central to thermal production.

« In the WIMP mass range, neutrino telescopes are yet to achieve sensitivities to test the thermal relic.
e In the future they will be, our study was to initiate the types of dark matter searches experiments

like KM3NeT could be doing.
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First order connections between dark matter and neutrinos

e Neutrinos have similar characteristics to dark @
matter (neutral under QCD and EM). X <
e m, # 0 means physics beyond the SM. 5 HH\ |
e Neutrinos are also great messenger particles # o o o e
for telescopes. {é / \
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Angular Power spectrum (APS)

« We wanted to test a new analysis method which initially was developed to help ditferentiate
between DM and Astrophysical signals JCAP 09 (2020) 007.

e Astrophysical sources are expected to be uniformly distributed across the whole sky.

e DM sources are correlated to the Galactic Centre.

o In this paper we extended collaborators APS analysis from lowering the sensitivity to
mMmpM = 200 GeV.

Null hypothesis Signal hypothesis: decay Signal hypothesis: annihilation

4

0 neutrino events ¢ 0 neutrino events 29 0 neutrino events 9l
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Angular Power spectrum (APS) how it works

« We simulate neutrino skymaps with DM signal and expected background, below 100 TeV

atmospheric neutrinos is the dominant background.

- Expanding the skymap in spherical harmonics Ny (0, ¢) = ) o AemYem (0, ).

e APS is described by the average expansion coetficient over the sky

£
1
C) = Y larml’
DY azm|

m=—¢

e Since DM signal from GC is the anisotropic source, we normalize Cy = C;;fN tZDt

e Build a y? from Cy.

/1/2 (Cf) — Z (Crf’ — Cglean) (COfoF)_l (Cfm — C?Fﬂn)
£t

e Which allows us to calculate the p-value
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Galactic DM probes have high levels of uncertainty

pon [GeV /em?]
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e The distribution of DM in our Galaxy is not well known, especially in the Galactic Center.

 Neutrino flux @ ; pIZ)M
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APS reduces the sensitivity to DM halo

« Here are the projections from our analysis (10 years of data taking).
e We see IceCube and ANTARES studies that do not use APS are much more sensitive to the halo

distribution.
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Looking for simple DM model that annihilates primarily into EE=

neutrinos

o Its difficult to make a simple DM that annihilates to only neutrinos (when m, > m, ) because
neutrinos live in the SU(2) doublet L.

o C El Aisati et. al. arXiv:1706.06600 catalogued simple models (1 DM candidate and 1 portal
particles).

e Generically you have a charged lepton channel, so y-ray telescopes will be competing.

M3NeT (o v)j+)- = (o V)5 B
KM3Ne'T | (ov
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Neutrino Portal? -

e M. Blennow et. al. arXiv:1903.00006 explored this, via a sterile neutrino portal.

e Constraints on the heavy-active neutrino mixing make it difficult to go above DM masses
~ 100 GeV which is what we were interested in.
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Its difficult to avoid direct dark matter detection

o At the DM masses we are interested in, direct
detection often is most constraining.
e Lepto-philic models don't interact at tree-level

to quarks or gluons so DD is sometims

neglected. [\1

0 o .
Al e Loop and radiative corrections mean that a
5 it lepto-philic model will be constrained a low
energies by baryons.
VLR
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Simple scalar model

2
Ty

 With interaction term L% = Va ,?Laqu + h. c. , leads to (GU) X

(m%+m§,)2

e Since my, > m, is required for DM stability, its difficult to reach higher masses.
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Vector mediated model

L7 = Fr(gy + efrs)x 2 + Lo La|vatel, + &11s)| 12",
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Theoretically shaky ground

e Having g? £ 0in simplified models have many theoretical constraints.

e Due to the growth of longitudinal part of Z' mediator, perturbative unitarity is violated at high
energles arXiv:1510.02110.

o Additionally, anomaly cancellation of a U (1) gauge field restricts the couplings to the SM.

o An anomaly-free U(1) extensionis L, — Ly
« L, — L; has weaker experimental contraints.

e Additional vector-like Fermions can be added to
this model.
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The Anomaly free U(1) L,—L, model

e Anomaly free, potentially there's a connection
with flavor anomalies.
e Inthe mz ~ 100 GeV region its a similar

story to before.

e 8 = =81 = 8u-r
-8 =g/ =0,

.« 8, =&y

.and g} =

10%¢

m, (GeV]

Gu—r = gy = 1.0
XENONI1T KM3NeT
LHCb
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Where U(1) 1, models shine

1

e An explanation of (g — 2), anomaly, no DM

-
L T rrrr

required. See D. Amarals asynchronous talk.
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» For our purposes (m, > 200 GeV), the

| COHERENT LAr

addition of a DM candidate would be severely
—4
AL
» We consider a light mediator mz» < m, but

1074 White Dwarfs

H; LT

constrained by direct detection 6pp X m

10~

in a secluded regime g,,_; K g, .

e So diboson production now allowed. 111-5-;
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How low can g, be?

 The life-time of Z' is constrained from below

by BBIN.

123?:1!112?r

104 102 109
m [GeV]

e Which gives us the freedom to choose g,_; such that direct detection constraints are avoided.
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U(l)L,—1, secluded model

« Whenmy < 2m, Br,z = 100 % - gy=10
N _ AN > 4 KM3NeT
e Additionally, since m,» < m ¥ the 4 H, _. Planck
sommerfeld effect can play a role, 10%F

m, |GeV]

///7/;6

. Since, S o« 1/v* and

UcMB << Udsph << Ugal CMB contraints

? & & are stronger than Fermi-LAT. 2
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Conclusions

 We provided a projection of a KM3Ne'T-like telescope with a new Angular Power Spectrum
analysis.

« APS minimizes uncertainties in the galactic dark matter density.

 We explored simple models for DM and how this analysis fits with the experimental landscape.

» We highlighted the interesting posibility for a secluded U (1) L,—L, model




