

Impact of the Electron Ion Collider on particle physics at the Energy Frontier

R. Boughezal, <u>S.V. Chekanov</u>, I. Cloet, T. Hobbs, J.R. Love, S. Magill, Z.-E. Meziani, F.J. Petriello, D. Wiegand, R. Yoshida

Snowmass21 August, 2020

LOI: https://www.snowmass21.org/docs/files/summaries/EF/SNOWMASS21-EF-TOPIC7-006.pdf

Impact of the Electron Ion Collider on particle physics at the Energy Frontier

R. Boughezal^a, S.V. Chekanov^a, I. Cloet^b, T. Hobbs^d, J.R. Love^a, S. Magill^a, Z.-E. Meziani^b, F.J. Petriello^c, D. Wiegand^a, R. Yoshida^a

^a HEP Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439, USA.

^b Physics Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439, USA.

^c Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA ^d SMU Department of Physics, P.O. Box 750175 Dallas, TX 75275-0175

Who are the authors & Plans

- Theorists (ANL, Northwestern Univ, SMU) and experimentalists (HEP /ANL)
- Experimentalists:
 - Expertise in HEP (ep at ZEUS/HERA) and medium energy physics
 - Participating in the ATLAS/LHC, NovA, DUNE, etc.
- Theorists:
 - Expertise in PDF, multiquarks states, fragmentation, heavy-flavor, Standard Model cross sections, BSM physics, jet physics

Interested to contribute? Please contact us.

Goal of this contribution:

Overview of science cases at the EIC experiment which are traditional to general particle physics, with a particular emphasis on the connections to the physics at the energy frontier (HEP)

Snowmass21 contributed paper will be finished by Spring 2021. Then it will be submitted to a journal

Structure of this Snowmass21 contribution

- Paper draft in Overleaf
- Contains a mix of original research and short summaries of published theoretical results by the authors
- Many studies anchored to H1+ZEUS results from HERA, TEVATRON and LHC results
- Sections:
 - 1) Parton distributions functions
 - 2) Beauty and charm production cross sections
 - 3) Fragmentation
 - Baryon-antibaryon asymmetry
 - Compound and multiquark states
 - 4) Hadronic Final States studies
 - Jets, forward physics and BFKL
 - 5) Topics Beyond the Standard Model (BSM) physics
 - 6) Search for Lepton Flavour Violation

Representative example: Search for Charged Lepton Flavor Violation (CLFV)

(a) Charm cross section

• $ep \rightarrow \mu X (1 event!)$

- LHC experiments typically focus on µ+tau decays of Higgs, Zbosons, LFV in top decays
- Also Discussed by A. Deshpande (link) and Y.Furletova (link) for EIC
- More recent H1 combination and interpretation in the context of LQ

H1 Collaboration, F. Aaron, et al., Search for Lepton Flavour Violation at HERA Phys. Lett. B 701 (2011) 20 arXiv:1103.4938

Probing SMEFT at the EIC

The Standard Model Effective Field Theory is a general framework for heavy BSM physics

$$\mathcal{L}_{SMEFT} = rac{1}{\Lambda^2} \sum_i C_i \mathcal{O}_i$$

- The LHC is not sensitive to certain directions in SMEFT parameter space
- Because of polarization, the EIC is!

Polarization at the EIC makes it a powerful probe of BSM theories; complementary to LHC data

Boughezal, Petriello, Wiegand PRD (2020)

EIC4HEP