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Introduction

e There are already a number of talks and documentations about the AF
o I'mtrying to not be repetitive and give an implementation oriented prospective
e Talk overview
o Recap of the status of the AF
m interfaces
m future plans
m alook at the big picture
o | suggest some operative ideas on how to implement your ideas
m Note that | don’t know your ideas



General Introduction




DAQ Software Suite Intro - The big picture

e A number of lessons learned from ProtoDUNE
O  https://docs.dunescience.org/cqi-bin/private/ShowDocument?docid=11737
m  Not complete nor definitive as the document was written at the end of the test beam
o A number of items were related to software

e Different working groups will be creating packages compatible with the AF
o The DAQ Suite will include these repositories

o plus a number of tools
o for the time being the main reposotories are https:/github.com/DUNE-DAQ



https://docs.dunescience.org/cgi-bin/private/ShowDocument?docid=11737
https://github.com/DUNE-DAQ

Application framework idea

Original lists

e Modular structure
o DAQ Module
o  “Intra-Module Connections done with Queues
e All wrapped up inside a DAQProcess
o It will propagate the commands from an interface
(CCM) to the modules
e All details here
https://github.com/DUNE-DAQ/appfwk/wiki/Interfaces-betwee
n-DAQ-objects

Generates
lists of int;
1/sec

Reverses lists
of int

Validates that
each pair of lists
match, modulo
reversal

Copy of original data Reversed lists

DAQProcess



https://github.com/DUNE-DAQ/appfwk/wiki/Interfaces-between-DAQ-objects
https://github.com/DUNE-DAQ/appfwk/wiki/Interfaces-between-DAQ-objects

Key Components - DAQModule

NamedObject
GraphConstuctor +get_name(): string const

+contruct_graph(const DAQModuleMap &, const TransitionOrderMap & ): void

Defines»

e The main insertion point for
e main insertion point fo T
-configuration_: json
u Ser Writte n COd e DAQProcess -command_: map<string, function<void( vector<string> & )>>
-DAQModuleMap +do_init(json): void
-TransitionOrderMap 0..*[+get_config(): json const
-StateMachine o—#init(): void
. O n e O r m O re DAQ M Od IeS a re +register_modules(const GraphConstuctor * ): void #set_config(json): void
u +execute_command(TransitionName,args:vector<string>): void +execute_command(command:string,args:vector<string> &): void
+listen(): int +get_commands(): vector<string> const
+has_command(command:string & ): bool const
#register command<T>(name:string &, void(T::*f)(string &))

connected by Queues to form a DAQ

Application
o Each DAQModule should be self-contained
and focused on a single task

m “Self-contained” means that it should Examples: Reading data from a Felix card,
not rely on the presence of any other Sending data to another DAQ Application,
DAQModules in the same application Performing Trigger Candidate selection

m “Single task” can be as complex as
necessary to achieve desired
functionality 6



Key Components - Queue Class Diagrams

<<enum>> kUknown = -1,
queue _kind |- - - > kStdDeQueue,
— kSPSCQueue,
} <<singleton>>
QueueRegistry
QueueConfig -map<string, QueueEntry>
+kind: queue_kind (‘L_"_lo-map<str1ng, QueueConfig>
+size: size t +get(): QueueRegistry &
+stogk(name:const string &): queue_kind +get_queue<T>(name:const string &): T*
+configure(const map<string, QueueConfig> &): void
-create_queue<T>(name:string, const QueueConfig &): void

Queue
NamedObject

& 1
StdDeQueue +push(T &, timeout:milliseconds): void -
—D 3 ‘—D#iname: string
+can_push(): bool const
+get_name(): string const

+pop(T &, timeout:milliseconds): bool
+can_pop(): bool const
1

DAQSink

+push(T &, timeout:milliseconds): void
+can_push(): bool const

DAQSource

+pop (T &,timeout:milliseconds): bool
+can_pop(): bool const




Key Components - Queue

e Simple templated connectors between DAQModules, exposing a pop/push
interface through the DAQSource and DAQSink helper classes

e Implementations are provided by the DAQ Framework

e DAQModules should not rely on a specific Queue implementation

e Initially, provided implementations is a std::deque-based and a
Folly-library-based one

e DAQModules use DAQSources and DAQSinks for input and output to other

DAQModules

o Any number of DAQSources and DAQSinks may be constructed by any given DAQModule, the
target Queue is identified by name in the DAQSource and DAQSink constructor



Application framework scope

e Provide common structure for DAQ Applications
o Graph model for data flow within application
o CCM-defined interfaces for control, logging, and metrics
m DAQ Processs (== 1application) is atomic unit from CCM perspective
o User-facing interfaces are kept minimal for flexibility
m DAQModule is primary user interface and it requires only one method to be implemented
e Support dynamic creation of modular applications
o Add and remove application components via configuration

e Encourage the creation of toolkit repositories that contain utility DAQModules
and libraries for performing common tasks



Status - version 1 release

®  htips://qgithub.com/DUNE-DAQ/appfwk

e appfwk v1.0 has DAQModules and Queues
o  Users can write their own DAQModules and combine them together
o configuration files to specify the graph

e appfwk v1.0 does not have inter-process communication

o Goalis to have this available in the next release of the DAQ SW Suite
o Command-line control is sufficient for configure/start/stop ‘transitions’
o Command handling and state, re-configuration, and other aspects are either rudimentary or not

yet available

e Instructions and examples on how to create new packages are available
O  https://github.com/DUNE-DAQ/appfwk/wiki
o We expect that folks will start with DAQModules in their own Github repo(s) and move that code
to the DUNE-DAQ project if/when they’re ready for that.
o Feedback collection

10
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https://github.com/DUNE-DAQ/appfwk
https://github.com/DUNE-DAQ/appfwk/wiki

Short term plan for the application framework

e Developer(s) from all WGs work through the examples and create their own
DAQModule(s)

o Check if the present design has limitations that limit operations

e Working groups identify volunteers to gather local feedback

e Data Flow WG hosts a discussion — answer questions, gather overall feedback
o Targeting second week of August

e Submitting feedbacks directly to GitHub

O opening an Issue

)



Medium-term DFWG plan for the DAQ Suite

e Some planned DFWG milestones:
o (end of) September 2020
m First availability of inter-process messaging infrastructure
m  Sample app with teststand-like readout & local write capability
o (end of) December 2020
m  Simplistic DAQ vertical slice system

e Of course, plans can change and schedules can slip...
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Design ideas




How to get to an effective design?

e The technicality of the implementations are described in the wiki
o  Description of the interfaces
o listrev example with step-by-step instructions

e ... But clearly your tasks are much more complicated than /istrev

o I'm going to give some ideas on how to produce a good design

o Meaning of “good”
m quickly identify problems with infrastructure design that requires feedbacks to the AF
B maximise code reusability
m good “sync” with the rest of the DAQ Suite

o Note that | don’t know your ideas
m These are general suggestions you might find in any software engineering textbook

e Generalrule
o write code only once the design is complete

14



Top down approach

e |n this case the only thing which is fixed is the high level structure
o Thatis the application framework

e You don’t get to decide what are the interfaces you are supposed to use
o  So start from what is fixed and work your way through the development from there
o It does not mean the interfaces are immutable
m But first try and see if they are enough

15



1) ldentifying the DAQModules you need to develop

e I’'m assuming you know which application you need to develop
o I’'m suggesting how to develop those applications
e The first step is being able to produce these diagrams s
o Check common code between applications

o immediately checks if AF is enough or you need something more
m Inthat case Feedback to us is necessary

e A few ideas to break down your applications in modules
o  Start writing flowchart of the operations for each applications
m operation Loops are good candidates for a DAQModule
m Data transmission operations are good candidates
e Defer the implementation of these modules as they might be developed as toolkits
e Feedbacks on how you intend to communicate or transmit data are very valuable

16




2) Internal tools

® Vyou are expected to develop an entire (git) repository: be creative
o not only DAQModules
o Identify tools that are specific for your operations and model them in classes and object
m In a flow chart scenario class candidates are the single blocks
m  Even writing down a small text that describes the operation helps
e classes «»names
e functions «verbs
o Identifying the relationships between the object is also important

e Operatively the possible output of this stage is a UML diagram
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Missing pieces

e Of course there will be missing pieces
o | suspect that big problem for DS will be the Hardware related software
o How to fill the gaps?
m writing (short) proposals about what information should be passed and how
e circulate with the relevant groups
m Contact people directly
m have liaisons between the working groups

e This is already happening at the level of the AF

o Infact Kurt suggested Liaisons for the AF at a previous SC meeting
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Conclusions
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Conclusions

e The first brick of a DUNE DAQ Suite is complete and deployed
o documentation and examples
e We are gathering feedbacks
o From the WG that should try to develop their own DAQ Modules
e Next steps
o Toolkit development
o DAQ Suite release
e Point of contacts:

o me and Eric Flumerfelt - AppFmwk issues
o  Phil and Kurt for more general issues and global feedback collection
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Key Components - Style Guide

e As DUNE is a large and long-lived experiment, enforcing consistent coding
style is important for maintainability

e The Software Coordination group has produced a style guide as well as linting
tools

e Style should be checked for every Github pull request

e htips://qgithub.com/DUNE-DAQ/stylequide/blob/develop/dune-dag-cppquide.m
d

e User code is expected to conform to the DUNE style, please read through the
rules and let the Software Coordination team know if there are any you can’t
live with
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https://github.com/DUNE-DAQ/styleguide/blob/develop/dune-daq-cppguide.md
https://github.com/DUNE-DAQ/styleguide/blob/develop/dune-daq-cppguide.md

Example Application

FakeDataConsu
erUserModule

fanOutToConsumer1
producerToFanOut
fanOutToConsumer2

e One configuration file for daq_application is provided in the initial appfwk
release package

e producer_consumer_dynamic_test.json loads a
“FakeDataProducerDAQModule”, a “VectorintFanOutDAQModule”, and
two “FakeDataConsumerDAQModules”

erUserModule

FakeDataConsu
erUserModule
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Example Application

FakeDataConsu
erUserModule

fanOutToConsumer1
producerToFanOut
fanOutToConsumer2

erUserModule

e “FakeDataProducerDAQModule” creates fixed-length vectors of integers, with
a specified length, starting integer, and ending integer (subsequent vectors
start where the previous left off, wrapping around when they reach the end int)

e “FakeDataConsumerDAQModule” validates received vectors of ints, checking
their length and whether they start with the expected integer 24

erUserModule




Example Application - Config

"queues": {
"producerToFanOut": { "size": 10, "kind": "StdDeQueue" },
"fanOutToConsumerl”: { "size": 5, "kind": "StdDeQueue" },
"fanOutToConsumer2": { "size": 5, "kind": "StdDeQueue" }
}s
"modules”: {
"producer": { "user_module_type": "FakeDataProducerDAQModule", "output": "producerToFanOut" },

"fanOut": { "user_module_type": "VectorIntFanOutDAQModule", "input": “producerToFanOut",
"outputs": [ "fanOutToConsumerl", "fanOutToConsumer2" ],
"fanout_mode": "RoundRobin" },
"consumerl”: { "user_module type": "FakeDataConsumerDAQModule", "input": "fanOutToConsumerl" },
"consumer2": { "user_module_type": "FakeDataConsumerDAQModule", "input": "fanOutToConsumer2" }

}s

"commands": {
"start": [ "consumerl", "consumer2", "fanOut", "producer" ],
"stop": [ "producer" ]

}

Note that command ordering should be used sparingly within an application; it is
shown here as part of the example
e



