DUNE DAQ Software Suite

application framework overview

Marco Roda
Data Selection meeting
04 August 2020

£33

Introduction

e There are already a number of talks and documentations about the AF
o I'mtrying to not be repetitive and give an implementation oriented prospective
e Talk overview
o Recap of the status of the AF
m interfaces
m future plans
m alook at the big picture
o | suggest some operative ideas on how to implement your ideas
m Note that | don’t know your ideas

General Introduction

DAQ Software Suite Intro - The big picture

e A number of lessons learned from ProtoDUNE
O https://docs.dunescience.org/cqi-bin/private/ShowDocument?docid=11737
m Not complete nor definitive as the document was written at the end of the test beam
o A number of items were related to software

e Different working groups will be creating packages compatible with the AF
o The DAQ Suite will include these repositories

o plus a number of tools
o for the time being the main reposotories are https:/github.com/DUNE-DAQ

https://docs.dunescience.org/cgi-bin/private/ShowDocument?docid=11737
https://github.com/DUNE-DAQ

Application framework idea

Original lists

e Modular structure
o DAQ Module
o “Intra-Module Connections done with Queues
e All wrapped up inside a DAQProcess
o It will propagate the commands from an interface
(CCM) to the modules
e All details here
https://github.com/DUNE-DAQ/appfwk/wiki/Interfaces-betwee
n-DAQ-objects

Generates
lists of int;
1/sec

Reverses lists
of int

Validates that
each pair of lists
match, modulo
reversal

Copy of original data Reversed lists

DAQProcess

https://github.com/DUNE-DAQ/appfwk/wiki/Interfaces-between-DAQ-objects
https://github.com/DUNE-DAQ/appfwk/wiki/Interfaces-between-DAQ-objects

Key Components - DAQModule

NamedObject
GraphConstuctor +get_name(): string const

+contruct_graph(const DAQModuleMap &, const TransitionOrderMap &): void

Defines»

e The main insertion point for
e main insertion point fo T
-configuration_: json
u Ser Writte n COd e DAQProcess -command_: map<string, function<void(vector<string> &)>>
-DAQModuleMap +do_init(json): void
-TransitionOrderMap 0..*[+get_config(): json const
-StateMachine o—#init(): void
. O n e O r m O re DAQ M Od IeS a re +register_modules(const GraphConstuctor *): void #set_config(json): void
u +execute_command(TransitionName,args:vector<string>): void +execute_command(command:string,args:vector<string> &): void
+listen(): int +get_commands(): vector<string> const
+has_command(command:string &): bool const
#register command<T>(name:string &, void(T::*f)(string &))

connected by Queues to form a DAQ

Application
o Each DAQModule should be self-contained
and focused on a single task

m “Self-contained” means that it should Examples: Reading data from a Felix card,
not rely on the presence of any other Sending data to another DAQ Application,
DAQModules in the same application Performing Trigger Candidate selection

m “Single task” can be as complex as
necessary to achieve desired
functionality 6

Key Components - Queue Class Diagrams

<<enum>> kUknown = -1,
queue _kind |- - - > kStdDeQueue,
— kSPSCQueue,
} <<singleton>>
QueueRegistry
QueueConfig -map<string, QueueEntry>
+kind: queue_kind (‘L_"_lo-map<str1ng, QueueConfig>
+size: size t +get(): QueueRegistry &
+stogk(name:const string &): queue_kind +get_queue<T>(name:const string &): T*
+configure(const map<string, QueueConfig> &): void
-create_queue<T>(name:string, const QueueConfig &): void

Queue
NamedObject

& 1
StdDeQueue +push(T &, timeout:milliseconds): void -
—D 3 ‘—D#iname: string
+can_push(): bool const
+get_name(): string const

+pop(T &, timeout:milliseconds): bool
+can_pop(): bool const
1

DAQSink

+push(T &, timeout:milliseconds): void
+can_push(): bool const

DAQSource

+pop (T &,timeout:milliseconds): bool
+can_pop(): bool const

Key Components - Queue

e Simple templated connectors between DAQModules, exposing a pop/push
interface through the DAQSource and DAQSink helper classes

e Implementations are provided by the DAQ Framework

e DAQModules should not rely on a specific Queue implementation

e Initially, provided implementations is a std::deque-based and a
Folly-library-based one

e DAQModules use DAQSources and DAQSinks for input and output to other

DAQModules

o Any number of DAQSources and DAQSinks may be constructed by any given DAQModule, the
target Queue is identified by name in the DAQSource and DAQSink constructor

Application framework scope

e Provide common structure for DAQ Applications
o Graph model for data flow within application
o CCM-defined interfaces for control, logging, and metrics
m DAQ Processs (== 1application) is atomic unit from CCM perspective
o User-facing interfaces are kept minimal for flexibility
m DAQModule is primary user interface and it requires only one method to be implemented
e Support dynamic creation of modular applications
o Add and remove application components via configuration

e Encourage the creation of toolkit repositories that contain utility DAQModules
and libraries for performing common tasks

Status - version 1 release

® htips://qgithub.com/DUNE-DAQ/appfwk

e appfwk v1.0 has DAQModules and Queues
o Users can write their own DAQModules and combine them together
o configuration files to specify the graph

e appfwk v1.0 does not have inter-process communication

o Goalis to have this available in the next release of the DAQ SW Suite
o Command-line control is sufficient for configure/start/stop ‘transitions’
o Command handling and state, re-configuration, and other aspects are either rudimentary or not

yet available

e Instructions and examples on how to create new packages are available
O https://github.com/DUNE-DAQ/appfwk/wiki
o We expect that folks will start with DAQModules in their own Github repo(s) and move that code
to the DUNE-DAQ project if/when they’re ready for that.
o Feedback collection

10
D

https://github.com/DUNE-DAQ/appfwk
https://github.com/DUNE-DAQ/appfwk/wiki

Short term plan for the application framework

e Developer(s) from all WGs work through the examples and create their own
DAQModule(s)

o Check if the present design has limitations that limit operations

e Working groups identify volunteers to gather local feedback

e Data Flow WG hosts a discussion — answer questions, gather overall feedback
o Targeting second week of August

e Submitting feedbacks directly to GitHub

O opening an Issue

)

Medium-term DFWG plan for the DAQ Suite

e Some planned DFWG milestones:
o (end of) September 2020
m First availability of inter-process messaging infrastructure
m Sample app with teststand-like readout & local write capability
o (end of) December 2020
m Simplistic DAQ vertical slice system

e Of course, plans can change and schedules can slip...

12

Design ideas

How to get to an effective design?

e The technicality of the implementations are described in the wiki
o Description of the interfaces
o listrev example with step-by-step instructions

e ... But clearly your tasks are much more complicated than /istrev

o I'm going to give some ideas on how to produce a good design

o Meaning of “good”
m quickly identify problems with infrastructure design that requires feedbacks to the AF
B maximise code reusability
m good “sync” with the rest of the DAQ Suite

o Note that | don’t know your ideas
m These are general suggestions you might find in any software engineering textbook

e Generalrule
o write code only once the design is complete

14

Top down approach

e |n this case the only thing which is fixed is the high level structure
o Thatis the application framework

e You don’t get to decide what are the interfaces you are supposed to use
o So start from what is fixed and work your way through the development from there
o It does not mean the interfaces are immutable
m But first try and see if they are enough

15

1) ldentifying the DAQModules you need to develop

e I’'m assuming you know which application you need to develop
o I’'m suggesting how to develop those applications
e The first step is being able to produce these diagrams s
o Check common code between applications

o immediately checks if AF is enough or you need something more
m Inthat case Feedback to us is necessary

e A few ideas to break down your applications in modules
o Start writing flowchart of the operations for each applications
m operation Loops are good candidates for a DAQModule
m Data transmission operations are good candidates
e Defer the implementation of these modules as they might be developed as toolkits
e Feedbacks on how you intend to communicate or transmit data are very valuable

16

2) Internal tools

® Vyou are expected to develop an entire (git) repository: be creative
o not only DAQModules
o Identify tools that are specific for your operations and model them in classes and object
m In a flow chart scenario class candidates are the single blocks
m Even writing down a small text that describes the operation helps
e classes «»names
e functions «verbs
o Identifying the relationships between the object is also important

e Operatively the possible output of this stage is a UML diagram

17

Missing pieces

e Of course there will be missing pieces
o | suspect that big problem for DS will be the Hardware related software
o How to fill the gaps?
m writing (short) proposals about what information should be passed and how
e circulate with the relevant groups
m Contact people directly
m have liaisons between the working groups

e This is already happening at the level of the AF

o Infact Kurt suggested Liaisons for the AF at a previous SC meeting

18

Conclusions

19

Conclusions

e The first brick of a DUNE DAQ Suite is complete and deployed
o documentation and examples
e We are gathering feedbacks
o From the WG that should try to develop their own DAQ Modules
e Next steps
o Toolkit development
o DAQ Suite release
e Point of contacts:

o me and Eric Flumerfelt - AppFmwk issues
o Phil and Kurt for more general issues and global feedback collection

20

Backup slides

Key Components - Style Guide

e As DUNE is a large and long-lived experiment, enforcing consistent coding
style is important for maintainability

e The Software Coordination group has produced a style guide as well as linting
tools

e Style should be checked for every Github pull request

e htips://qgithub.com/DUNE-DAQ/stylequide/blob/develop/dune-dag-cppquide.m
d

e User code is expected to conform to the DUNE style, please read through the
rules and let the Software Coordination team know if there are any you can’t
live with

22

https://github.com/DUNE-DAQ/styleguide/blob/develop/dune-daq-cppguide.md
https://github.com/DUNE-DAQ/styleguide/blob/develop/dune-daq-cppguide.md

Example Application

FakeDataConsu
erUserModule

fanOutToConsumer1
producerToFanOut
fanOutToConsumer2

e One configuration file for daq_application is provided in the initial appfwk
release package

e producer_consumer_dynamic_test.json loads a
“FakeDataProducerDAQModule”, a “VectorintFanOutDAQModule”, and
two “FakeDataConsumerDAQModules”

erUserModule

FakeDataConsu
erUserModule

23

Example Application

FakeDataConsu
erUserModule

fanOutToConsumer1
producerToFanOut
fanOutToConsumer2

erUserModule

e “FakeDataProducerDAQModule” creates fixed-length vectors of integers, with
a specified length, starting integer, and ending integer (subsequent vectors
start where the previous left off, wrapping around when they reach the end int)

e “FakeDataConsumerDAQModule” validates received vectors of ints, checking
their length and whether they start with the expected integer 24

erUserModule

Example Application - Config

"queues": {
"producerToFanOut": { "size": 10, "kind": "StdDeQueue" },
"fanOutToConsumerl”: { "size": 5, "kind": "StdDeQueue" },
"fanOutToConsumer2": { "size": 5, "kind": "StdDeQueue" }
}s
"modules”: {
"producer": { "user_module_type": "FakeDataProducerDAQModule", "output": "producerToFanOut" },

"fanOut": { "user_module_type": "VectorIntFanOutDAQModule", "input": “producerToFanOut",
"outputs": ["fanOutToConsumerl", "fanOutToConsumer2"],
"fanout_mode": "RoundRobin" },
"consumerl”: { "user_module type": "FakeDataConsumerDAQModule", "input": "fanOutToConsumerl" },
"consumer2": { "user_module_type": "FakeDataConsumerDAQModule", "input": "fanOutToConsumer2" }

}s

"commands": {
"start": ["consumerl", "consumer2", "fanOut", "producer"],
"stop": ["producer"]

}

Note that command ordering should be used sparingly within an application; it is
shown here as part of the example
e

