

Prospects for a new cLFV program at FNAL

**Francesco Renga - INFN Roma**Robert Bernstein - FNAL
David Neuffer - FNAL

### Outline

- Generalities of rare muon decay searches
- $\mu$  -> e  $\gamma$  and  $\mu$  -> 3e search strategy, current status and future perspectives
- Future high-intensity muon beam lines
- Prospects for a new cLFV program at FNAL

### Generalities of rare muon decay searches

- Key ingredients:
  - high intensity muon beams
  - precise reconstruction of low-energy electrons, positrons and photons

# Continuous, low-momentum, positive muon beams are preferred:

- continuous time structure to suppress accidental coincidences
- positive muons are not captured by nuclei (decay spectra not distorted)
- low-momentum to stop muons in thin targets (low material budget)

# Tracking detectors with very low material budget

- gaseous detectors are preferred
- silicon detectors, if used, need to be pushed at the technological limits in terms of material budget

Photon detectors tailored for low energies

### $\mu \rightarrow e \gamma searches$



### **Accidental Background**



28 MeV/c muons are stopped on a thin target

Positron and photon are monochromatic (52.8 MeV), back-to-back and produced at the same time;

#### Radiative Muon Decay (RMD)



### $\mu \rightarrow e \gamma searches$



### μ -> e γ searches — Some critical aspects

 Extremely good positron resolutions require very low multiple scattering, not only in the detector but also in the target

In MEG-II, the target thickness necessary to stop most of the muons is almost enough to make MS in the target one of the dominant contributions to the angular resolution

-> a beam with low energy and low momentum bite is necessary in order to stop muons in a very thin target

- Time resolution is critical both on the positron and photon side
- Aging of detectors to be carefully considered

### Surface muons

- Surface muons:
  - from pions decaying at rest near the surface of a proton target
  - p ~ 30 MeV/c, E<sub>KIN</sub> ~ 4 MeV



160

### Surface muons

- Surface muons:
  - from pions decaying at rest near the surface of a proton target
  - $p \sim 30 \text{ MeV/c}$ ,  $E_{KIN} \sim 4 \text{ MeV}$
- A convenient choice for rare muon decay searches:
  - high intensity
  - high purity
  - low energy
  - low momentum bite

### MEG-II status



# μ -> e γ searches — Future perspectives



#### Calorimetry vs. Photon conversion

High efficiency vs. extremely good resolutions & low cost





Gaseous detector aging will be an issue



### μ -> 3e searches

- 3 charged tracks allow for vertexing:
  - strong suppression of accidental background —> higher beam rates can be exploited
  - excellent 3-momentum resolution to reject SM background —> low material budget



### Mu3e status

#### Successful test beam of timing detectors in 2019













Final design of pixel sensors completed



### Mu3e — Sensitivity and perspectives

#### Data taking expected after 2022





- ~ 5 x 10<sup>-15</sup> UL sensitivity in phase I (current PSI beam)
- Down to 10<sup>-16</sup> with present technology and increased beam intensity
- Thinner silicon detector, with better time resolution, is critical to go below 10<sup>-16</sup>

### Future high-intensity muon beams

- High intensity muon beams are crucial in the search for cLFV
- A few projects to get muon beams 1 or 2 orders of magnitude more intense than now are under study around the world:
  - HiMB @ PSI
  - MuSIC @ RCNP (Osaka, Japan)
  - prospects for DC muon beams at PIP-II (Fermilab, USA) are under studies

## The HiMB Project @ PSI

- PSI is designing a high intensity muon beam line (HiMB) with a goal of
   ~ 10<sup>10</sup> µ/sec (x100 the MEG-II beam)
- Optimization of the beam optics:
  - improved muon capture efficiency at the production target
  - improved transport efficiency to the experimental area

x4 μ capture eff. x6 μ transport eff.

 $1.3 \times 10^{10} \, \mu/s$ 

in the experimental area with 1400 kW beam power



## Production target

- The ring cyclotron at PSI also serves a neutron spallation source (SINQ) downstream of the π/μ production target
  - the proton beam need to be mostly preserved
     -> thin production target



# The MuSIC Project @ RCNP

- At RCNP in Osaka (Japan) the goal is to fully exploit the proton beam power with a thick production target:
  - 10<sup>6</sup> μ per Watt of beam power (vs. 10<sup>4</sup> μ/W at HiMB)



Thick production target muon capture solenoid

 $4 \times 10^{8} \mu/s$ 

at the production target with 400 W beam power

S. Cook et al., Phys. Rev. Accel. Beams 20 (2017)

### A beam line for muon decay searches at PIP-II

- PIP-II can provide plenty of muons can be used for rare decay searches?
- One option is to take the Mu2e beam and make it
  - positive (easy)
  - **continuous** (easy propagation in the beam line spread the muon arrival times, muon lifetime makes the rest)
  - **low momentum** (*difficult*)
  - monochromatic (very difficult)

# Time-varying deceleration



- Exploit the time structure of the Mu2e beam (faster muons arrive sooner):
  - time-varying deceleration can be applied with an induction linac technique

### Induction linac approach

- Keep beam captured with a solenoid
  - Mu2e muons are traveling in helices, requiring a solenoid to keep them trapped
  - Then use a combination of induction linac and dE/dx to decelerate (match to time distribution)





# Civil engineering aspects



Possibly available space downstream of Mu2e



21

### Goals

 Such a facility could exploit the huge amount of muons that are expected at PIP-II

| Facility     | pos. muons/sec          |  |
|--------------|-------------------------|--|
| Current Mu2e | 1011                    |  |
| PIP-II       | <b>10</b> <sup>12</sup> |  |
| PSI          | 2 x 10 <sup>8</sup> *   |  |
| HiMB PSI     | <b>10</b> <sup>10</sup> |  |

### Technical aspects

- The induction linac technology is mature and successfully applied to muon acceleration at J-PARC
- Capture solenoid techniques already studied for neutrino factories
- Most of the beamline technologies and conditions are the same of Mu2e
  - different arrangement and handling of different energy and time structure are the hardest part of this idea
- Alternate run of Mu2e and muon decay experiments

### Alternative option - Surface muon beam

- The possibility of having a surface muon beam at PIP-II is also under investigation
- Conventional technology
- Could we explore a MuSIC-like concept?
  - thick production target ok
  - muon capture solenoid *very hard at high beam power*
- Deceleration could be still applied to reduce energy and momentum bite w.r.t. conventional surface muon beams

## Surface muons — what can we get from PIP-II?

#### **PIP-II** parameters

|                                                     |                                                                                                                 | CW concurrent multi-     |                                           |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------|
|                                                     | Pulsed sequential multi-user                                                                                    | user                     | 1                                         |
| Parameter                                           | up to CW-single user                                                                                            | 3-way separator, 2 users | Comment                                   |
| Energy [MeV]                                        | 800                                                                                                             | 800                      | Upgradable                                |
| Pulse length [us]                                   | Programmable, sequentially<br>shared between users, up to CW<br>in single-user mode, repetitive<br>(e.g. 20 Hz) | CW                       |                                           |
| H-/bunch                                            | Up to 1.9E8                                                                                                     | 1.5E+08                  | Pulse beam current limited to 2 mA        |
| Max bunch freq. [MHz],<br>bunch pattern             | Up to 162.5<br>Programmable                                                                                     | 40.625                   | Defined by RFQ and RF Separator frequency |
| Pulse beam current to user [mA], averaged over 1 us | 2                                                                                                               | 1                        | Limited by selected amplifiers            |
| Min. Bunch Spacing [ns]                             | 6.2                                                                                                             | 24.6                     |                                           |
| Bunch length [ps]                                   | 4                                                                                                               | 4                        | Defined by beam dynamics                  |
| Pulse beam power averaged over 1 us [kW]            | 1600                                                                                                            | N/A                      |                                           |
| Average power [kW]                                  | Up o 1600,<br>Proportional to user share                                                                        | 800                      |                                           |

Figures similar to PSI ring cyclotron, but the full beam power can be exploited —> 1 to 2 orders of magnitude gain is reasonable

## Strong points of a muon decay facility at PIP-II

- All cLFV experiments could be carried on in the same place:
  - global leadership
  - strong community
  - easier exchange of knowledge and experience would make the experimental efforts **stronger and faster**
- An opportunity to leverage the Mu2e and Mu2e-II investments

### Conclusions

- We are investigating the possibility of having a facility for the search of rare muon decays at FNAL
- The beam intensity of the possible PSI upgrade (HiMB) could be exceeded by a factor 10÷100
- Opportunity to build a large community and strengthen the experimental efforts toward the discovery of cLFV
- A Letter of Interest will be submitted to Snowmass2021