CLICCT hits timing for MARS background and IP muons

Nikolai Terentiev (Carnegie Mellon U./Fermilab)

Muon Collider Physics and Detectors Meeting May 18, 2011 Fermilab

- Time of flight (TOF) in MARS background data
- ILCroot CLICCT hits (tracker + vertex detectors) for photons, neutrons, e^+e^- and μ^{+-} from MARS background
- IP (Interaction Point) muons in CLICCT hits
- MARS background and IP muons in CLICCT hits
 TOF window
- Conclusion

MARS background data (Nov. 18, 2010) (http://www-ap.fnal.gov/~strigano/mumu/mixture/)

- 750 GeV 2e+12 μ^+ and μ^- beams, 10^o nozzle geometry

- "Short-range" source term: 4.8e+05 simulated decays for each beam
 -25m < Z < 1m for µ⁺ beam, -1m < Z < 25m for µ⁻ beam
 each source term file has about 5M particles
- "Long-range" source term: 2.4e+07 simulated decays for each beam
 -189m < Z < -25 m for μ⁺ beam, 25m < Z < 189 m for μ⁻ beam
 each file has about 0.44M particles (mostly muons)

Abs. yields/bunch (weights included, E=750 GeV, both beams, 2.0e+12 muons each) on 10^o nozzle surface

photon	n	e +-	р	π+-	μ+-
1.77e+08	0.40e+08	1.03e+06	3.13e+04	1.54e+04	0.80e+04

MARS particle ID and TOF

- Time of flight (TOF) wrt. bunch crossing time, on the surface of 10^o nozzle, MARS particle weights included
- In window 0 <= TOF <= 25 ns
 ~21% of neutrons, ~36% of muons, >94% of other particles
- TOF < 0 corresponds to the particles making straight path to detector

- Looking at timing in CLICCT (CLICCT = VXD + SiT + FTD) hits for ID specific particles:
 - Limited statistics MARS ROOT files were prepared having only ID specific background particles from both muon beams
 - Photons 0.1M
 - Neutrons 0.1M
 - e⁺e⁻ 0.046M
 - "Short" range μ^{+-} 2,270
 - "Long" range μ^{+-} 0.1M

Run ILCroot simulation for these samples (without MARS weights)

- Use official layout of CLICCT and previous release (/grid/fermiapp/ILCroot/sw/setup/setup_ILCrootMuX_MuXDetV2.sh)
- Ignore the fact that MARS simulation is made for 10^o nozzle while official ILCroot is using 6^o nozzle (impact of CLICCT/nozzle overlap is minor)
- QGSP_BERT_HP hadronic model physics list in GEANT4

CLICCT hits for IP muons

- Simulation of CLICCT hits for IP μ^2 as physics events
 - Originate in IP (Interaction Point) at X=0, Y=0, Z=0
 - Flat distribution in momentum P, angles Phi and Theta
 1 GeV < P < 100 GeV, 10.4^o < Theta <(180-10.4)^o
 - 10 muons per event, total 200 events or 2,000 μ^2
 - Using fTof variable from CLICCT.Hits.root, require fStatus !=65
 - Total 2260 hits in CLICCT, almost all have TOF < 8 ns

R vs. Z for IP muon hits

TOF for IP muon hits

N. Terentiev (CMU/Fermilab) Muon Collider Physics and Detectors Meeting, May 18 2011, Fermilab

- Fractions of hits within TOF window vs. TOF window width
 - TOF window begins at 0 ns (bunch crossing time), no MARS particle weight, no smearing in CLICCT collection and resolution time, no contribution from beams in previous bunches...

Fractions of hits within TOF window vs. TOF window width - biases

- MARS particle weight dependence on TOF (mostly for neutrons, left picture)
- Si strip/pixel collection time and front-end electronics resolution time are not provided in ILCroot (CLICCT SDigits and Digits do not have timing)

Neutrons

Photons

TOF for neutron hits

- Plenty of hits with large TOF (the TOF tail is up to $\sim 1e+4 \mu s$)
- Produced by interactions with neutron "gas" (secondary low energy neutrons in GEANT4 ?) bouncing in detector (N. Mokhov, seen in MARS simulation as well)
- Need to estimate accumulation from beam background in previous bunch crossings in given TOF window (~1,000 bunches if spaced by 10 μ s)

- Fractions of hits within TOF window vs. TOF window width
 - Simulate CLICCT collection + resolution time smearing with gauss (σ = 3 ns) as an example
 - TOF window begins at -10 ns (10 ns prior to the bunch crossing time, see picture on the left for IP muons)
 - At 20 ns TOF window (~100% efficiency for IP muons) hit fraction for MARS background particles:
 - ~20% for photons and e+e-
 - ~10% for short range muons and ~2% for long range muons
 - ~<0.2% for neutrons, integrated contribution from hits with TOF > 10 μ s not included

N. Terentiev (CMU/Fermilab) Muon Collider Physics and Detectors Meeting, May 18 2011, Fermilab

Conclusion

- The timing in ILCroot CLICCT hits for MARS background and IP muons was analyzed
- As an example the collection time and front-end resolution time was smeared with σ = 3 ns gauss
- For IP muons ~100% of hits are in 20 ns wide TOF window
- At 20 ns TOF window hit fraction for MARS background particles:
 - ~20% for photons and e+e-
 - ~10% for short range muons and ~2% for long range muons
 - ~<0.2% for neutrons if integrated contribution from hits with TOF > 10 μs not included
- For realistic estimation of the rejection of beam background neutrons when using timing:
 - New MARS background data with low energy neutrons are needed
 - Timing information for ILCroot SDigits and Digits must be added
 - Integrated contribution from hits with TOF > 10μ s has to be included