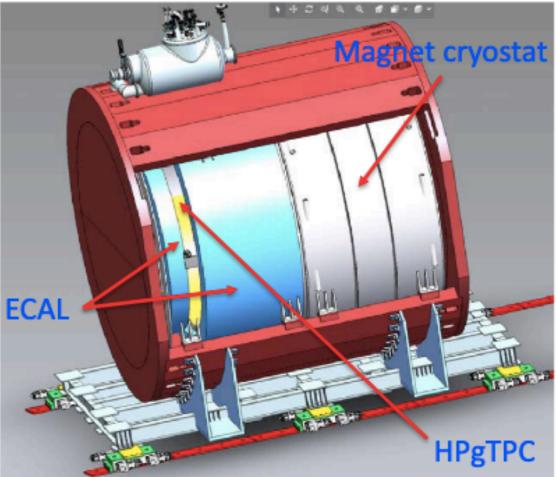
Summary of ND-GAr Workshop – I

DUNE ND Meeting, Jan 20, 2021 A. Marino, U Colorado Boulder

Workshop Details

- Virtual Workshop on ND GAr from Jan 11–13
- https://indico.fnal.gov/event/47020/
- Slides and recordings of most talks available on indico page
- Intended as a working meeting, with an informal agenda including discussion time in breakout rooms
- •83 registered participants, thanks to all who attended
- Very successful!

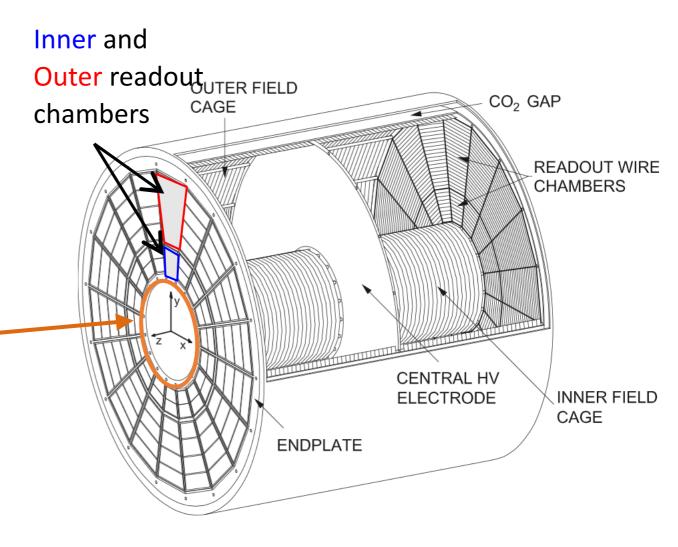

Workshop Structure

• Monday:

- Plenary talk with an overview of current ND-GAr design and interfaces; Discussion of key questions to be answered
- Three breakout sessions: Mechanical, Electronics, Physics/ Simulations
- Tuesday:
 - Three breakout sessions: Mechanical, Electronics, Physics/ Simulations
 - Plenary session with summaries from each breakout group
- Wednesday:
 - Two breakout sessions: Mechanical, Physics/Simulations
 - Plenary session with summaries from each breakout group, discussion of high priority items and (briefly) funding

ND-GAr Reference Design

- Magnetized volume including highpressure (10 atm) gaseous argon TPC + ECAL. Plus external muon tagger
 - Copy of ALICE TPC (5m in diameter X 5m long active)
 - 1t fiducial target mass
 - 0.5T field
- HPgTPC surrounded by highperformance ECAL
 - Inside PV
 - Optimization study underway
- Muon tagger
 - Outside return Fe
 - Scintillator, RPCs or MicroMegas (tbd)



Alan Bross

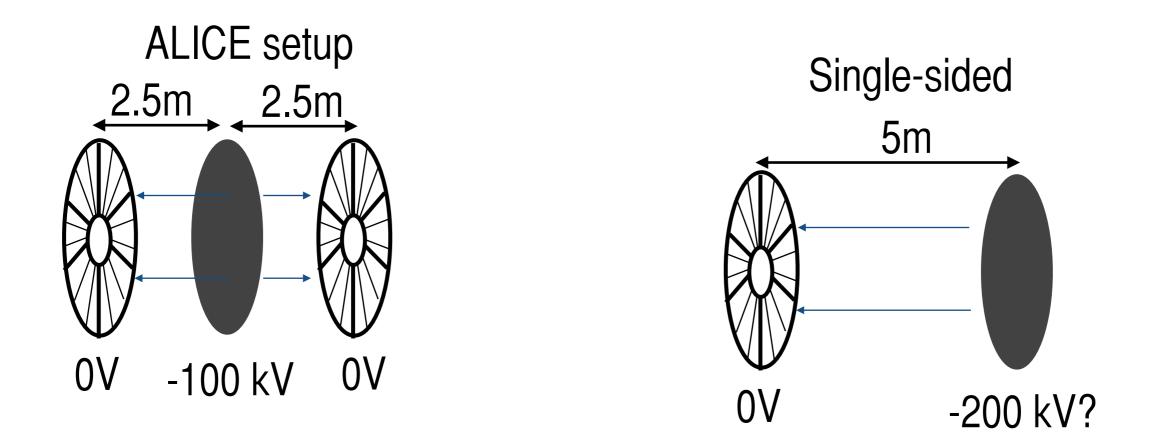
HPgTPC Concept

- Concept based on ALICE TPC
- ALICE is upgrading their inner and outer readout chambers (ROCs) during the CERN long shutdown, old chambers available for DUNE

- Lots of details in workshop slides and meeting notes
- Listing some of the major questions that were discussed in each area

Key Questions – Mech, HV, Gas

- Should the TPC have single or double drift volume?
- Scintillation light detection (develop concrete R&D plan to narrow down the gas mix options)
- What are the desired calibration systems and how do they interface?
- Should the HV degrader gas volume be separate from the main volume, and a different gas?
- What are the mechanical/structural interfaces between the magnet, ECAL, and TPC?

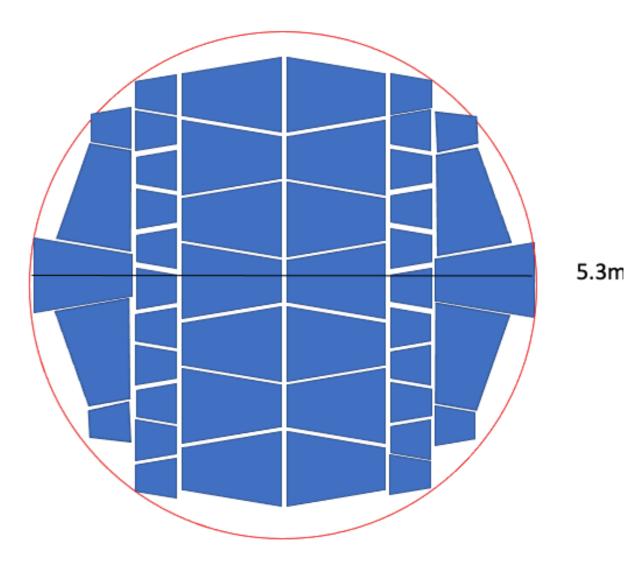

Key Questions - Electronics

- What are the design, R&D and prototyping plans for the Front-end electronics for TPC & ECAL?
- What is the maximum heat load we can tolerate without cooling? With cooling?
- ASIC options
- Frequency needs?
- What are the anticipated cable counts for the various systems and the corresponding number of feedthroughs into the pressure vessel?

Key Questions – Simulations and Physics Studies

- Should the TPC have single or double drift volume? Can we rearrange chamber to fill central hole?
- What optimization needs to be done for ND-GAr-Lite?
- We need a noise model in GArSoft and a hit threshold. What is the S/N requirement? What is the dynamic range requirement on the electronics?
- What is the electron drift specification (diffusion, electron lifetime)?
- What are the calibration needs?
- Can we use NEST to simulate ionization and scintillation?
- What needs to be done in order to interface different generators to the ND simulation?

Single-Sided vs Double-Sided readout



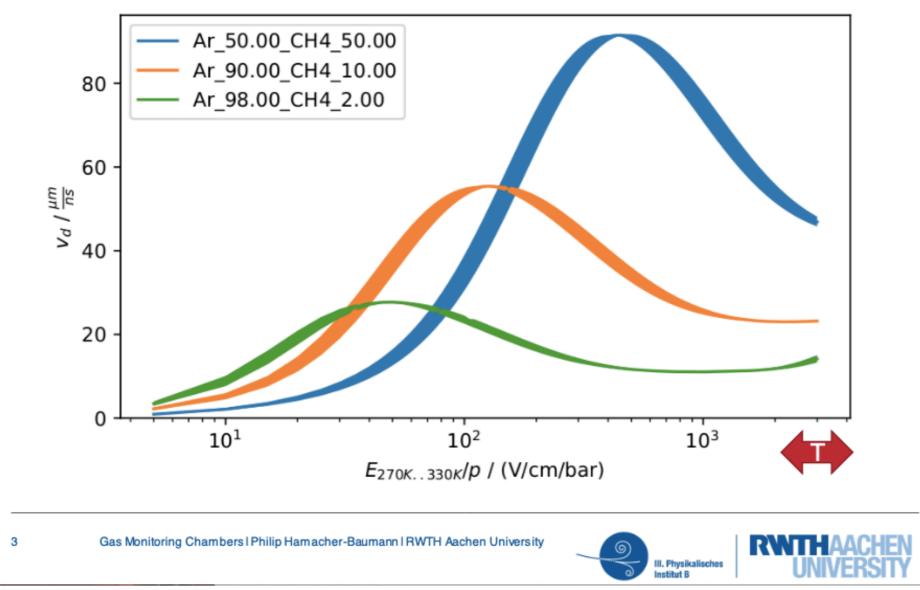
 Only maybe 1 spare ALICE chamber at the moment. A 2-sided readout leaves space for a light collection system behind a semi-transparent electrode, and gives us spare readout chambers

Single-sided readout with rearranged IROCs and OROCs

- Single-sided readout allow for spares, and potentially can fill the central hole
- But must understand impact of non-uniform pad sizes

Quick layout concept from Diego González-Diáz

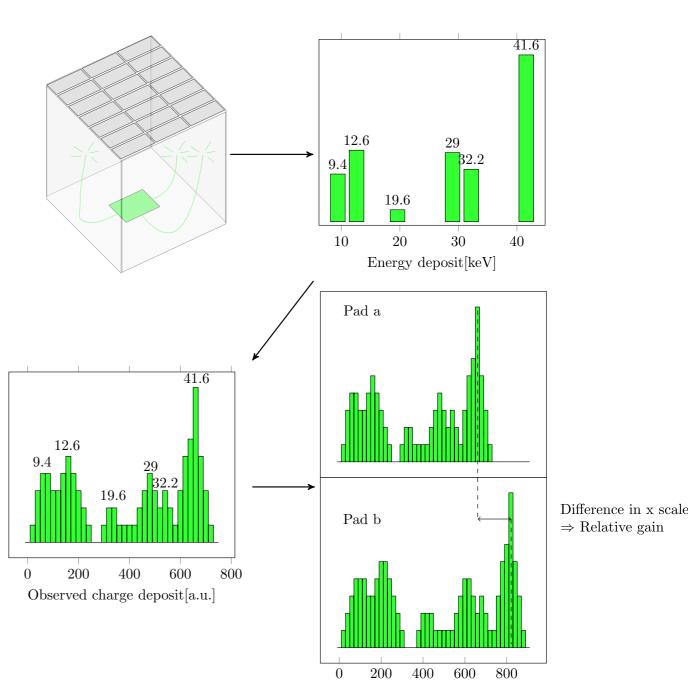
Scintillation Study Plans


- Argon scintillates in UV, but this must be wavelength shifted to give a stable gain in the chambers
- Mixture optimized for scintillation wavelength shifting could also reduce the chamber gas gain. So must perform studies to balance these.
- Strategy:
 - Start with Ar-N₂ and Ar-CF₄
 - Might also be able to think about adding a third species as a quencher to improve gain stability.
 - Need to study outgassing in Ar of photodetectors. Can possibly do this in a test stand at FNAL or Santiago.

Impact of gas temp

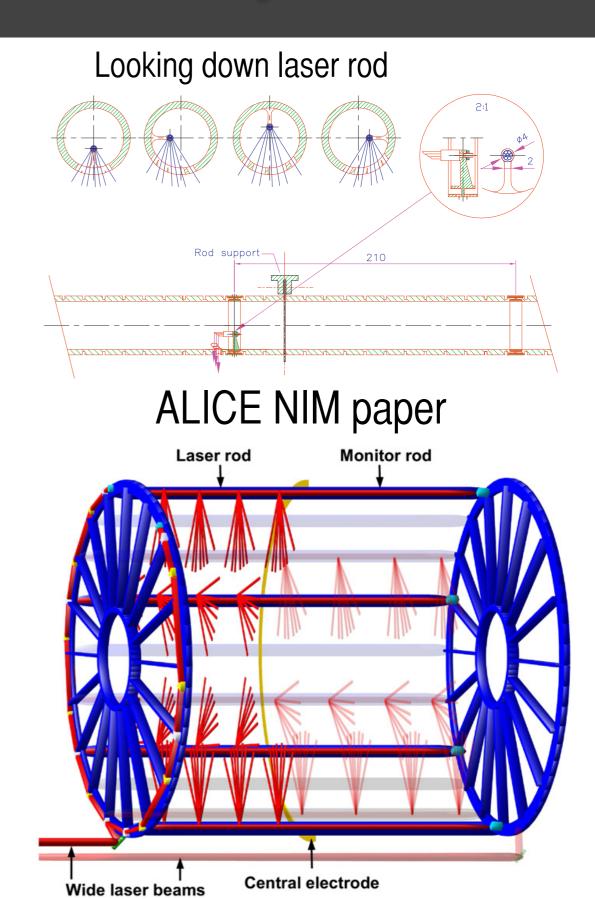
Impact of Temperature on Electron Drift Velocity

Philip Hamacher-Baumann


Assuming a (hopefully) too wide span of possible TPC temperatures

 Suggestion to try to operate at peak if possible. Reduces temp control requirements. Must see how this interacts with scintillation mixtures

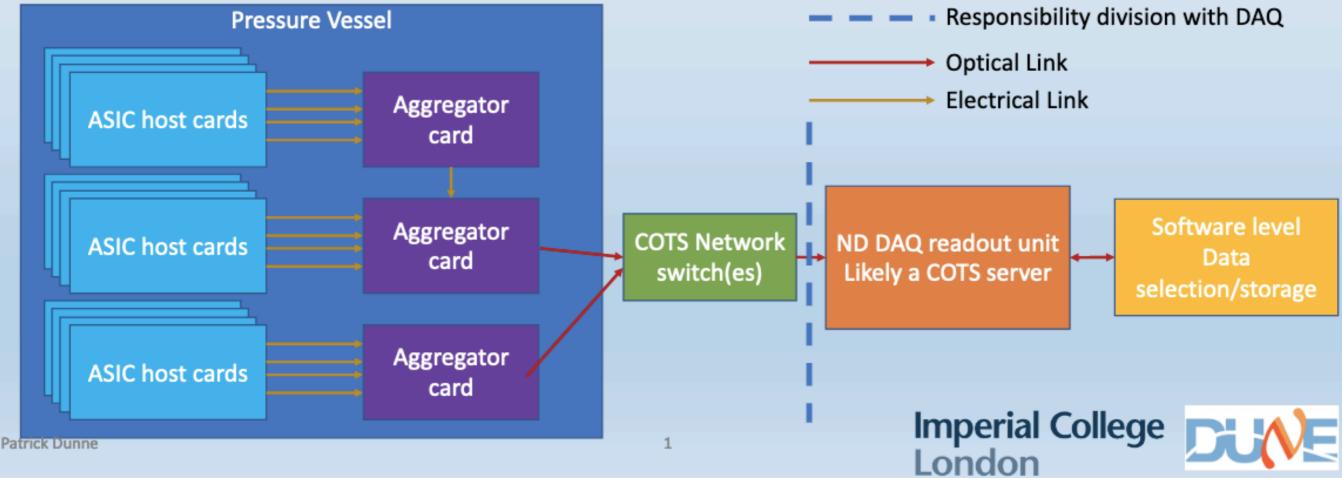
Chamber Gain Calibration


- In-situ check with ⁸³₃₆Kr calibrate for gas gain effects
 - In ALICE performed for ~1 week/yr
 - Look for Kr clusters in data.
 - Accumulate a spectrum for each pad and fit to spectrum to determine relative gain
 - How large of a signal do we expect?

From M. Naskret, masters thesis on NA61 Kr calibration

ALICE Laser Calibration System

- Pulses of 266 nm UV light
- Laser beams entered the endcaps
- Mirror bundles generated a "fan" of light
- 4 different z positions in each half of the TPC (~ 80 cm apart)
- All metallic surfaces inside the TPC, which are hit by stray laser light, emit electrons. So also a signal from the central aluminized mylar electrode.
- Do we need an ALICE-like system or can we just use integrated signal from the central electrode?
 - Probably want something ALICElike, especially for a single 5 m drift



Electronics System

Patrick Dunne

System design

- Number of feedthroughs on pressure vessel will be limiting and we want to limit the analogue signal path length
 - Therefore must digitize and zero-suppress inside vessel before sending out of vessel
- Design underway of aggregator cards in UK and of ASIC host cards in USA
- Timing information will also need passing in to aggregator cards

Electronics Status and Questions

 Design of HPgTPC readout electronics is underway with some early prototypes starting to be available for some components

- Do we need full waveforms? Can we record just a fraction?
- Time sampling needs (impact longitudinal position accuracy)
- Details of occupancy from simulation efforts will be essential for optimizing system design
- What is thermal budget?

Donna Naples

Assembled PCB (v1 LArPix ASIC)

Simulation Needs

Tom Junk First round of prioritization done Items to discuss and prioritize

- Simulation
 - ND-GAr-Lite
 - Software, event generation interface with LAr-ND, (SAND?)
 - Generator interface (We have GENIE Chris M. can run NuWRO, would like more; can be done via reweighting)
 - Muon Catcher
 - Central Readout Chamber (CROC)
 - Single Drift option -- slides from Leo
 - Noise modeling and hit threshold study
 - Scintillation Light simulation in ND-GAr. Use NEST?
 - How much truth info to store? (MCParticle trajectories are big)
 - space charge and positive ion drift (probably negligible but can we prove it?)

S

Tom Junk

First round of prioritization done Items to discuss and prioritize

- Reconstruction
 - Optimize track and cluster finding and resolution; Look into pattern recognition failures and optimize fit; picking out kinks.
 - Reconstruct K_S, Λ in a dense environment (not just pure K_S) Needs separation from primary vertex
 - Study PID in real simulation. Lots of handles. <u>dE</u>/dx, curvature vs. range, scattering, ECAL match, muon tagger system
 - Charge kaon reconstruction (need for proton decay?) has a kink in $K^+ \rightarrow \mu^+, K^+ \rightarrow \pi^+ X$
 - Characterize performance as reco is optimized
 - Reconstruct photon conversions in TPC volume
 - Incorporate scintillation light (not yet simulated or detected)

S

Items to discuss and prioritize Leo Bellantoni

Physics

- Samples
 - Simulation of L+G Ar w/ rock µ: needs latest geometry sufficient for all needs through TDR?
 See Federico's slides – we have a good start.
 - Full spill for MPD reco work
 - Prism: off-axis samples needed
 - Single interaction (no ECAL etc. activity) for MPD reco work
 - Special interaction samples (coherent pion, numu, nue, NC, npi)

Items to discuss and prioritize

- Analyses
 - Muons-from-LAr selection, efficiency, background, and energy scale and resolution

Leo Bellantoni

- ND-GAr-Lite
- ND-GAr
- ND-GAr event selection optimization
 - numuCC
 - nueCC
 - NC
- Efficiency and background calculation (backgrounds to NC from neutrons from ECAL were brought up. Some NC events have very little charged activity at the primary)

(Tanaz spoke yesterday)

- Prism with ND-GAr oscillation analysis (CAFAna samples for LBLPWG)
- Energy scale and resolution
- PID optimization and performance characterization
- BSM

High Priority Action Items

- Mechanical/Gas
 - Single-sided drift vs double-sided drift
 - Scintillation studies
- Electronics
 - Test prototype ASICs in test stands
 - Prototype agregator cards
- Simulations and Physics Studies
 - ND GAR-lite simulations, optimize the plane geometry
- Globally: Form a Calibration Task Force to define calibration requirements and strategy

Connect with us!

- Weekly ND-GAr meeting on Monday 11 AM Central / 6 PM Central Europe. Mailing list: <u>dune-nd-gastpc@listserv.fnal.gov</u> (Can request to join via "DUNE At Work".)
- Also periodic gas tune meetings are organized by Diego González-Diáz. Mailing list: <u>dune-nd-gastpc-tune@listserv.fnal.gov</u>
- Also an ND Reco/Sim Physics Working Group is being formed (across the whole ND). They are currently selecting a new time (contact Matthew Muether). Mailing list: <u>dune-nd-sw-integration@listserv.fnal.gov</u>
- Also a HPGPTC test mailing list: dune-hpgtpc-tests@listserv.fnal.gov
- Also bi-weekly magnet meetings on Friday: dune-nd-magnet@listserv.fnal.gov