
Embed an xrootd expert inside your
Kubernetes cluster

1

Shivansh Saini
B. Tech. Computer Science
Google summer of code student

Fabrice Jammes
Scalable Data Systems Expert
IN2P3/LSST Corporation
Kubernetes expert and trainer
https://k8s-school.fr

Credits:
Andy Hanushevsky
Xrootd expert
SLAC

Yvan Calas
Large scale storage expert
CC-IN2P3

https://k8s-school.fr

What are Kubernetes operators?1

Qserv operator 2

Xrootd operator3

Demo4

 What is an Operator?

Operators embed ops knowledge from the experts

See

• https://kubernetes.io/docs/concepts/extend-kubernetes/operator/

• https://cloud.google.com/blog/products/containers-kubernetes/best-practices-for-building-kubernetes-operators-and-stateful-apps

ops knowledge from the
experts

operator
implementation

i.e. k8s controller

Deployments
StatefulSets
Autoscalers

Secrets
Config maps

https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://cloud.google.com/blog/products/containers-kubernetes/best-practices-for-building-kubernetes-operators-and-stateful-apps

How does an operator works?

Software Developer
Kubernetes user

Kubernetes operator

Deployments
StatefulSets
Autoscalers

Secrets
Config maps

K8s API

Custom resource
kind: CuttingEdgeDatabase

apiVersion :

database.example.com /v1alpha1

metadata:

 name: my-important- database

spec:

 connectionPoolSize : 300

 readReplicas: 2

 version: v4.0.1

+

Watch Event

Custom Kubernetes controller

Reconcile

Custom resource definition
here CuttingEdgeDatabase

Native Kubernetes
resources

 Why should you use an operator?

Operators: both sysadmin + application experts

⏣ Resize/Upgrade

⏣ Reconfigure

⏣ Backup

⏣ Healing

 Operator across the industry

Operator across the industry

OperatorHub.io | The registry for Kubernetes Operators

https://operatorhub.io/

 Multiple operator frameworks

Operators

● kudo: simple, no need to code, not so popular:
https://github.com/kudobuilder/operators/tree/master/repository

● metacontroller: simple, no need to code, started at Google
Based on kubernetes-sigs/controller-runtime: Repo for the controller-runtime subproject of kubebuilder (sig-apimachinery)

and kubernetes-sigs/controller-tools: Tools to use with the controller-runtime libraries

● operator-framework: complex, code in golang, popular,
well-documented (book), from RedHat

● kubebuilder: complex, code in golang, popular,
well-documented (book)

See https://gist.github.com/tiewei/d98c663cf76b61bf835c1ebf87b36999

https://github.com/kudobuilder/operators/tree/master/repository
https://github.com/kubernetes-sigs/controller-runtime
https://github.com/kubernetes-sigs/controller-tools
https://gist.github.com/tiewei/d98c663cf76b61bf835c1ebf87b36999

 operator-framework

Operator framework in action
Based on KubeBuilder libraries:

kubernetes-sigs/controller-runtime: Repo for the controller-runtime subproject of kubebuilder (sig-apimachinery)

kubernetes-sigs/controller-tools: Tools to use with the controller-runtime libraries

https://github.com/kubernetes-sigs/controller-runtime
https://github.com/kubernetes-sigs/controller-tools

Operator SDK: types of operators

OperatorHub: the MongoDb example

Qserv The LSST Petascale database

16

Relational database, 100% open source
Spatially-sharded with overlaps
Map/reduce-like processing, highly distributed

Qserv design

17

Combiner

MariaDB
node

MariaDB
node

MariaDB
node

MariaDB
node

Partitioned
data

Partitioned
data

Partitioned
data

Partitioned
data

Distributor

 Kubernetes operator for Qserv

The Qserv custom resource: qserv.yaml
apiVersion: qserv.lsst.org/v1alpha1

kind: Qserv

metadata:

 name: qserv

spec:

 imagePullPolicy: "Always"

 storageclass: "standard"

 storagecapacity: "5Ti"

 czar:

 image: "qserv/qserv:dcbfff7"

 ingest:

 dbimage: "mariadb:10.2.16"

 worker:

 replicas: 30

 image: "qserv/qserv:dcbfff7"

 replication:

 image: "qserv/replica:tools-w.2018.16-1347-g5de8f05-dirty"

 dbimage: "mariadb:10.2.16"

 xrootd:

 image: "qserv/qserv:dcbfff7"

 replicas: 2

Describe how to install a custom
Qserv cluster on any Kubernetes
platform

Manage xrootd redirectors

Embed xrootd servers

What it does @CC-IN2P3
$ kubectl get pods

NAME READY STATUS RESTARTS AGE

qserv-operator-694db99875-ss67r 1/1 Running 0 27d

$ kubectl apply -k overlays/in2p3/

secret/secret-mariadb-qserv-dev unchanged

secret/secret-repl-db-qserv-dev unchanged

secret/secret-wmgr-qserv-dev unchanged

qserv.qserv.lsst.org/qserv-dev created

$ kubectl get pods

NAME READY STATUS RESTARTS AGE
Qserv-dev-czar-0 1/1 Running 0 5m48s
qserv-dev-repl-ctl-0 1/1 Running 0 5m48s
qserv-dev-repl-db-0 1/1 Running 0 5m48s
qserv-dev-worker-0 5/5 Running 0 5m48s
qserv-dev-worker-1 5/5 Running 0 5m48s
qserv-dev-worker-2 5/5 Running 0 5m47s
...
qserv-dev-worker-29 5/5 Running 0 5m45s
qserv-dev-xrootd-redirector-0 2/2 Running 0 5m48s
qserv-dev-xrootd-redirector-1 2/2 Running 0 5m48s
qserv-operator-694db99875-ss67r 1/1 Running 0 27d

Create a custom Qserv
instance, based on qserv.yaml

Prerequisite

In seconds
Qserv+xrootd ssi plugin
is up and running on
CC-IN2P3
pre-production platform

 Summary

What we have seen:

• Operators ease application delivery and management over Kubernetes.

• Operator goal is to automate sysadmins tasks.

• Multiple operator frameworks are competing right now.

• Qserv operator works fine and is build on top of RedHat operator-sdk

=> And what about pure xrootd?

Kubernetes
operator for XRootD
cluster

Hosted at xrootd/xrootd-k8s-operator

https://github.com/xrootd/xrootd-k8s-operator

Project Goals

● To develop a operator that:
○ eases and fully automate deployment and management of XRootD clusters
○ targeted for all clusters compliant with Kubernetes API
○ is intended for use by the XRootD community in order to scale-up worldwide XRootD clusters

management
○ is easy-to-install and has seamless upgrades
○ provides deep insights to the cluster state and alerts on failure

● Write well-written documentation for the operator that:
○ describes the installation and update process
○ explains configuration options for XRootD cluster
○ describes how to extend the cluster
○ documents the contribution guidelines and development process

XRootD Protocol
XRootD protocol enables high performance, scalable

fault-tolerant access to data repositories of various kinds,

including EOS.

It is meant to solve the Any Data, Anytime, Anywhere
(AAA) requirement to access the remote files regardless if

they are present in your region or halfway around the world!

It's possible by abstracting two types of nodes in any

XRootD cluster:

1. Redirectors - These nodes coordinates the function of

the cluster and enable communication via Intra-region

and Cross-region redirection

2. Workers - These nodes are actually the ones storing

and providing the data to the client

XRootD Cluster Architecture

Data PV

XRD config

cmsd xrootd

1094

Worker Pod Redirector Pod

XRD config

cmsd xrootd

10942131

Worker
Service

(ClusterIP)

Redirector
Service
(NodePort)

Worker StatefulSet Redirector StatefulSet

Installation

● Install OLM in your cluster

● Install Subscription CR for Xrootd

operator

● OLM will now fetch the latest operator

bundle image, belonging to the specified

channel

● OLM will install the required CRDs,

permissions, role and operator

deployment

● Updating operator is seamlessly handled

by OLM

OLM via OperatorHub

● Deploy the operator using installation

script

● Updating operator version requires

manual re-installation

Manually via script

https://github.com/xrootd/xrootd-k8s-operator/blob/master/deploy/operator.sh
https://github.com/xrootd/xrootd-k8s-operator/blob/master/deploy/operator.sh

Cluster Configuration via CRDs

apiVersion: xrootd.org/v1alpha1

kind: Xrootd

metadata:

 name: base-xrootd

spec:

 version: 4.11.2

 redirector:

 replicas: 2

 worker:

 replicas: 3

 storage:

 capacity: "1Gi"

 class: "default"

XRootD CRD XRootD Version Catalog CRD

apiVersion: catalog.xrootd.org/v1alpha1

kind: XrootdVersion

metadata:

 name: 4.11.2

spec:

 version: 4.11.2

 deprecated: false

 image: "qserv/xrootd:v4.11.2"

Example
kubectl apply -k manifests/base

Technical Flow
What happens on Reconciliation?

Reconcile()

SyncResources()

RefreshWatch()

IsValid

Relevant
Resources

Apply Changes (CUD)

Watches

Monitor Resources

Monitoring and Insights

● Integration with OLM provides Declarative UI controls

● Status of Xrootd CR is updated with connected workers and redirectors

DEMO

