
Major comments to the second version of the DUNE ND CDR

L. Patrizii, R. Petti

Table 1.7 SAND Capabilities Requirements

CDR July 13, 2020 (v2)

Table 1.7: Capability requirements for SAND.

Label	Description	Specification	Rationale	Ref. Req
ND-C5.1	Statistics of identified ν_{μ} CC events	For $p_{\mu} > 20$ tons, $E_{\nu} > 5$ tons	SAND must collect and iden- tify enough ν_{μ} CC interactions to perform beam monitoring on a weekly basis.	ND-M8
ND-C5.2	$E_{ u}, p_{\mu}$ resolution	<1 GeV for either	SAND must have sufficient muon resolution to detect spectral variations in ν_{μ} CC events from a representative set of variations in a week.	ND-M9
ND-C5.3	Vertex reconstruction	<50 cm	SAND must have the ability to vertex neutrino interactions into upper/lower, left/right re- gions relative to the nominal beam center.	ND-M9
ND-C5.4	Track timing	<20 ns in tracker, <400 ps on hits in ECAL	occurring within the neutrino	ND-M9, ND-M10

Table 1.2: Measurement requirements for ND .

Label	Description	Spec.	Rationale	System	Ref. Req.
ND-M8	Monitor the rate of neu- trino interactions on- axis	<1% in a week	The ND must have a component that remains on-axis where beam monitoring is most sensitive and collects a sufficient number of ν_{μ} CC events.	SAND	ND-05
ND-M9	Monitor the beam spec- trum on-axis	N/A	The ND must use spectrum infor- mation to detect representative changes in the beam line.	SAND	ND-05
ND-M10	Assess External Back- ground	N/A	The ND must measure external backgrounds, which include cos- mic and beam-induced activity.	ND-LAr, ND-GAr, SAND	ND-O6

CDR May 12, 2020 (v1)

Table 1.7: Capability requirements for SAND

Label	Description	Specification	Rationale	Ref. Req
ND-C5.1	Statistics of identified ν_{μ} CC events	$< 1\%$ across p_{μ} bins each week	SAND must collect and iden- tify enough ν_{μ} CC interactions to perform beam monitoring on a weekly basis.	ND-M8
ND-C5.2	Muon resolution		SAND must have sufficient muon resolution to detect spectral variations in ν_{μ} CC events from a representative set of variations in a week.	ND-M9
ND-C5.3	Vertex reconstruction		SAND must have the ability to vertex neutrino interactions into upper/lower, left/right re- gions relative to the nominal beam center.	ND-M9

Our Proposed changes (submitted May 21, 2020)

Table 4: Capability requirements for System for on-Axis Neutrino Detection (SAND) .

Label	Description	Specification	Rationale	Ref.
				Req
ND-C5.1	Statistics of identified	<1% across	SAND must collect and iden-	ND-M8
	ν_{μ} CC events	p_{μ} bins each	tify enough ν_{μ} CC interac-	
		week	tions to perform beam mon-	
			itoring on a weekly basis.	
ND-C5.2	Lepton Identification		SAND must be able to	ND-M9,
			identify and reconstruct the	ND-M3,
			change and momentum of μ^{\pm}	ND-M4,
			and e^{\pm} for beam monitoring	ND-M5,
			and redundant on axis flux	ND-M6
			measurements	
ND-C5.3	Muon reconstruction		SAND must have sufficient	ND-M9,
			momentum resolution to	ND-M4,
			detect variations in the beam	ND-M5
			settings from the recon-	
			structed neutrino energy.	
ND-C5.4	Charged hadron re-		The large fraction of ν in elas-	ND-M9,
	construction		tic interactions implies the	ND-M4,
			need of an accurate recon-	ND-M5,
			struction of charged hadrons	ND-M6
ND-C5.5	Neutral particle recon-		SAND must be able to detect	ND-M9,
	struction		π^0 , γ , K_0 and neutrons for an	ND-M4,
			accurate reconstruction of the	ND-M5,
			neutrino energy	ND-M6
ND-C5.6	Vertex reconstruction		SAND must reconstruct the	ND-M9,
			vertex neutrino interactions	ND-M10
			with high accuracy	
ND-C5.7	Timing resolution		SAND must have high time	ND-M9,
			resolution to reject external	ND-M10
			background	

Label	Description	Specification	Rationale	Ref. Req
ND-C5.1	Statistics of identified $ u_{\mu} \text{ CC events}$	For $p_{\mu} > 20$ tons, $E_{\nu} > 5$ tons	SAND must collect and iden- tify enough ν_{μ} CC interactions to perform beam monitoring on a weekly basis.	ND-M8
ND-C5.2	$E_{ u}, p_{\mu}$ resolution	<1 GeV for either	SAND must have sufficient muon resolution to detect spectral variations in ν_{μ} CC events from a representative set of variations in a week.	ND-M9
ND-C5.3	Vertex reconstruction	<50 cm	SAND must have the ability to vertex neutrino interactions into upper/lower, left/right re- gions relative to the nominal beam center.	ND-M9
ND-C5.4	Track timing	<pre><20 ns in tracker, <400 ps on hits in ECAL</pre>	SAND must have timing to identify and separate activity occurring within the neutrino beam delivery window.	ND-M9, ND-M10

Table 1.7: Capability requirements for SAND.

Our General Comment

With the specifications given in the table SAND cannot perform the monitoring of the beam variations on weekly basis.

As demonstrated by dedicated studies (e.g.DocDB 13262), it is necessary to measure the neutrino energy with adequate resolution to be sensitive to most of the considered beam variations in one week. With the muon energy alone SAND sensitivity to several variations would be lost/greatly reduced.

Results ECAL+STT - 1 week

Proton beam parameter	Variation		EC	AL			ECAL		
		$\sqrt{\Delta\chi^2}$	$\overline{P}(E_{\nu})$	$\sqrt{\Delta\chi^2}$	$\overline{E}(E_{\mu})$	$\sqrt{\Delta \chi}$	$^{2}(E_{\nu})$	$\sqrt{\Delta\chi^2}$	$\overline{E}(E_{\mu})$
		true	rec	true	rec	true	rec	true	rec
Horn current	+3 kA	10.4	8.7	5.1	5.0	12.6	10.3	6.1	6.0
Water layer thickness	$+0.5\mathrm{mm}$	4.6	4.0	2.9	2.9	5.5	4.7	3.5	3.4
Decay pipe radius	+0.1 m	6.5	5.9	3.5	3.4	7.9	6.9	4.1	4.1
Proton target density	+2%	5.9	5.3	4.3	4.2	7.0	6.1	5.0	4.9
Proton beam sigma	$+0.1 \mathrm{mm}$	4.2	3.8	3.0	3.0	5.1	4.4	3.5	3.4
Proton beam off set X	$+0.45 \mathrm{mm}$	5.0	4.1	3.0	3.0	5.8	4.7	3.5	3.4
Proton beam theta phi	0.07 mrad $ heta,$ 1.57 ϕ	0.7	0.4	0.2	0.2	0.9	0.5	0.3	0.3
Proton beam theta	$0.070 \mathrm{mrad}$	0.8	0.5	0.3	0.3	1.0	0.6	0.3	0.3
horn 1 X shift	$+0.5\mathrm{mm}$	4.0	3.3	2.1	2.0	4.8	3.8	2.4	2.4
horn 1 Y shift	$+0.5\mathrm{mm}$	4.5	3.7	2.4	2.4	5.3	4.2	2.7	2.7
horn 2 X shift	$+0.5\mathrm{mm}$	0.6	0.4	0.3	0.3	0.8	0.5	0.4	0.4
horn 2 Y shift	$+0.5\mathrm{mm}$	0.6	0.3	0.2	0.2	0.7	0.4	0.3	0.2

Cylindrical symmetry, X assymetry, Y assymetry There is a significative difference between true and reconstructed \rightarrow resolution is important.

Neutrino energy is more sensitive with respect to muon momentum.Image: Image: Imag

Label	Description	Specification	Rationale	Ref. Req
ND-C5.1	Statistics of identified $\nu_{\mu}~{\rm CC}$ events	For $p_{\mu} > 20$ tons, $E_{\nu} > 5$ tons	SAND must collect and iden- tify enough ν_{μ} CC interactions to perform beam monitoring on a weekly basis.	ND-M8
ND-C5.2	$E_{ u}, p_{\mu}$ resolution	<1 GeV for either	SAND must have sufficient muon resolution to detect spectral variations in ν_{μ} CC events from a representative set of variations in a week.	ND-M9
ND-C5.3	Vertex reconstruction	<50 cm	SAND must have the ability to vertex neutrino interactions into upper/lower, left/right re- gions relative to the nominal beam center.	ND-M9
ND-C5.4	Track timing	<20 ns in tracker, <400 ps on hits in ECAL	-	ND-M9, ND-M10

Table 1.7: Capability requirements for SAND.

Row 1 Column 3 : the specification should be given in number of events

Row 2 Column 3: an energy resolution of 1 GeV would completely wash out any spectral variation. Split the specifications in two separate ones, for E_nu and p_mu, "p_mu resolution <5%. E_nu resolution <20%"

Row 3 Column 2: "vertex reconstruction"

<u>Change to</u> "vertex position resolution"

Row 3 Column 3: a vertex reconstruction with an accuracy of 50 cm is incompatible with the requirement of ND-M9. <u>Change to</u> "Vertex resolution < 5 cm"

Row 4 Column 2"Track timing"Change to"Time resolution"

Row 4 Column 3 In a 20 ns time interval tracks can cross the entire detector: impossible to separate external background. <u>Change to</u> "Time resolution < 1ns in tracker, 250 ps in ECAL"

Chapter 1: Introduction/Overview of the Near Detector

- **1-6 lines 23-29** SAND consists of a massive plastic scintillator target surrounded by low-mass tracking and an ECAL inside a large solenoidal magnet. The plastic scintillator target is the 3D scintillator tracker (3DST), which is made up of 1 cm cubes that are read out along each of three orthogonal dimensions. The design eliminates the typical planar-strip ambiguity common to detectors using scintillator, leading to improved acceptance for final state particles traveling at large angles relative to the beam direction.
- Change toSAND consists of a solenoidal superconducting magnet, a 4π electromagnetic
calorimeter, and an inner magnetized volume instrumented with a composite tracking
and target system. The reference design includes a 3D scintillator tracker (3DST)
system and a low-density tracker based either on time projection chamber (TPC) or on
straw tube tracker (STT). The 3DST is made up of 1 cm cubes that are read out along
each of three orthogonal dimensions.

An alternative tracker design is based on filling the entire magnetic volume with orthogonal planes of straw tubes interleaved with interchangeable targets. The reference and alternative options for the tracking and target system are all under active consideration, and continuing studies will allow a final decision on tracker and target system technology for the ND technical design report. Both tracking configurations are also complemented by a thin liquid argon active target located inside the electromagnetic calorimeter and upstream of the tracking system.

(Already proposed in May22,2020)

<u>5-135 Line 24</u> Change to	"sufficient muon energy resolution in nu_mu_events" "sufficient neutrino energy resolution in CC neutrino interactions"
<u>5-136 Line 1</u>	"The muons emanating from those vertices must be reconstructed with good charge identification"
Change to	"Charged particles originating from the interaction vertices must be reconstructed with good charge identification"
<u>5-136 Lines 14-15</u>	"Because SAND is required to measure the sign and momentum of muons it is also capable of similar measurements of charged hadrons.
Change to	"SAND is required to measure the sign and momentum of muons and of charged hadrons"
<u>5-137 Line 24</u>	"The concept of a thin LAr target is also being considered for inclusion in both designs."
Change to	"A thin LAr target is also foreseen in both designs."