

Snowmass IF06 Monthly Meeting Virtual, August 2020

CALICE

Frank Simon Max-Planck-Institute for Physics

MAX-PLANCK-INSTITUT

Outline

- Motivation for Granularity
- CALICE Technology
- Selected Results
- Ideas and Plans for the Future

Dreams...

• For *hadronic* (and all other) final states, we want to solve this problem:

Dreams...

• For *hadronic* (and all other) final states, we want to solve this problem:

Ideally: reconstruct every single particle in the event not just leptons + "cones of energy"

... Goals ...

More practically:

directly depends on mass resolution

... Goals ...

• More practically:

- ... Goals ...
- But also: Identification of particles A classic example: Tau reconstruction

... Tools ...

CALICE - Snowmass '21 IF06 , August 2020

- The hardware to work with: A Collider Detector
 - Vertex detectors to identify heavy quarks and leptons
 - Tracking system to measure the momentum of charged particles via curvature in magnetic field
 - Calorimeter systems to measure energy of neutral and charged particles via total absorption
 - *Muon system* to identify muons, improve momentum measurement

... and Algorithms

- Particles decaying into quarks lead to jets: Multiple hadrons originating from final-state quarks

... and Algorithms

- Particles decaying into quarks lead to jets: Multiple hadrons originating from final-state quarks
- Parton four-vector only accessible via reconstruction of final hadrons

CALICE - Snowmass '21 IF06, August 2020

- Requires measuring the energies of different particle types
 - Charged hadrons ($\pi^{+/-}$, ...)
 - Electromagnetic particles (γ , e^{+/-})
 - Neutral hadrons (K_L, n, ...)
- \Rightarrow Best performance when optimally combining the information of all subsystems of the experiment: calorimetry & tracking => "Particle Flow" and "Imaging Calorimeters"

Physics drivers

- particle showers in all 3 dimensions
 - \Rightarrow X₀ / ρ_M drive ECAL and HCAL (electromagnetic subshowers)

• Granularity goals defined by hadronic shower physics: Segmentation finer than the typical structures in

Physics drivers

- particle showers in all 3 dimensions
 - \Rightarrow X₀ / ρ_M drive ECAL and HCAL (electromagnetic subshowers)

Depends on material:

- in W: X₀ ~ 3 mm, ρ_M ~ 9 mm
- in Fe: X₀ ~ 20 mm, ρ_M ~ 30 mm

When adding active elements: ~ 0.5 cm³ segmentation in ECAL, ~ 3 - 25 cm³ in HCAL

• Granularity goals defined by hadronic shower physics: Segmentation finer than the typical structures in

NB: Best separation for narrow showers particularly important in ECAL \Rightarrow Use W in ECAL!

Physics drivers

- particle showers in all 3 dimensions
 - \Rightarrow X₀ / ρ_M drive ECAL and HCAL (electromagnetic subshowers)

Depends on material:

- in W: X₀ ~ 3 mm, ρ_M ~ 9 mm
- in Fe: X₀ ~ 20 mm, ρ_M ~ 30 mm

When adding active elements: ~ 0.5 cm³ segmentation in ECAL, ~ 3 - 25 cm³ in HCAL

In addition: type of readout highly relevant: Need "analog" information for energy measurements can be achieved also with "particle counting", requiring correspondingly higher granularity to avoid saturation effects

N.B.: In particular in the ECAL, a granularity significantly below the typical shower width can be highly beneficial

• Granularity goals defined by hadronic shower physics: Segmentation finer than the typical structures in

NB: Best separation for narrow showers particularly important in ECAL \Rightarrow Use W in ECAL!

Physics drivers

- particle showers in all 3 dimensions
 - \Rightarrow X₀ / ρ_M drive ECAL and HCAL (electromagnetic subshowers)

Depends on material:

- in W: X₀ ~ 3 mm, ρ_M ~ 9 mm
- in Fe: X₀ ~ 20 mm, ρ_M ~ 30 mm

When adding active elements: ~ 0.5 cm³ segmentation in ECAL, ~ 3 - 25 cm³ in HCAL

In addition: type of readout highly relevant: Need "analog" information for energy measurements can be achieved also with "particle counting", requiring correspondingly higher granularity to avoid saturation effects

N.B.: In particular in the ECAL, a granularity significantly below the typical shower width can be highly beneficial

 \Rightarrow 10s to 100s of millions of detector cells (or even more!) for full systems

• Granularity goals defined by hadronic shower physics: Segmentation finer than the typical structures in

NB: Best separation for narrow showers particularly important in ECAL \Rightarrow Use W in ECAL!

Motivations for Granularity

From a technological Perspective

Because we can.

• The invention of SiPMs made scintillator-based calorimeters with very large channel counts possible

Motivations for Granularity

From a technological Perspective

Because we can.

• The invention of SiPMs made scintillator-based calorimeters with very large channel counts possible

CALICE - Snowmass '21 IF06 , August 2020

Motivations for Granularity

From a technological Perspective

Because we can.

• The invention of SiPMs made scintillator-based calorimeters with very large channel counts possible

In addition: Advances in microelectronics, large area silicon systems for Si-based calorimetry

CALICE - Snowmass '21 IF06 , August 2020

Phases of CALICE Development

• Validation of the concept of highly granular calorimetry: Physics prototypes with different ECAL and HCAL technologies in beam

Phases of CALICE Development

- Validation of the concept of highly granular calorimetry: Physics prototypes with different ECAL and HCAL technologies in beam
- Exploitation of the unprecedented data set on hadronic showers:
 - Development of reconstruction techniques for granular calorimeters
 - Comparison to and validation of GEANT4 simulations providing input to development of physics lists

Phases of CALICE Development

- Validation of the concept of highly granular calorimetry: Physics prototypes with different ECAL and HCAL technologies in beam
- Exploitation of the unprecedented data set on hadronic showers:
 - Development of reconstruction techniques for granular calorimeters
 - Comparison to and validation of GEANT4 simulations providing input to development of physics lists
- Technical Realisation of detector systems satisfying collider constraints: Technological prototypes, with fully embedded electronics, power pulsing,... tested in particle beams, partially with magnetic field

Phases of CALICE Development

- Validation of the concept of highly granular calorimetry: Physics prototypes with different ECAL and HCAL technologies in beam
- **Exploitation** of the unprecedented data set on hadronic showers:
 - Development of reconstruction techniques for granular calorimeters
 - Comparison to and validation of GEANT4 simulations providing input to development of physics lists
- **Technical Realisation** of detector systems satisfying collider constraints: Technological prototypes, with fully embedded electronics, power pulsing,... tested in particle beams, partially with magnetic field
- Application of CALICE technology in running experiments:
 - Use of CALICE detector elements
 - Full detector systems based on CALICE technology

CALICE Technologies

CALICE - Snowmass '21 IF06 , August 2020

Frank Simon (fsimon@mpp.mpg.de)

CALICE Technologies

Validation

• A rich test beam program, with a variety of different prototypes

Electromagnetic - Tungsten absorbers

analog: Silicon and Scintillator/SiPM

digital: Silicon (MAPS)

39 Mpixels in 160 cm²

CALICE - Snowmass '21 IF06 , August 2020

Hadronic - Steel and Tungsten absorbers

analog: Scintillator/SiPM (Fe and W)

(Semi)digital: RPCs (Fe, W digital only)

+ few-layer SD prototype with Micromegas

Frank Simon (fsimon@mpp.mpg.de)

Key Challenges of Highly Granular Calorimeters

- To fully exploit the potential of highly granular calorimeter systems:
 - Extreme compactness, in particular in ECAL
 - Minimal "dead space" between ECAL and HCAL
 - No non-instrumented cracks
- For the full calorimeter systems, this imposes a number of requirements: Both ECAL and HCAL inside solenoid: Further premium on compactness • Fully integrated electronics to support high granularity, minimal dead

 - space outside of active area
 - Ultra low power to reduce or eliminate cooling needs, complex power distribution to support high currents during power pulsing w/o significant voltage drop
 - all detector elements
 - Very compact interfaces: data concentration, calibration, services • Precise mechanics: High number of sampling layers, minimal space Suitability for industrialization and automatization in QA and assembly for

CALICE - Snowmass '21 IF06, August 2020

Technical Realisation The SiW ECAL

- 1024 channels per layer
- Assembly chains in France and Japan
- Beam tests at DESY and CERN since 2016

• Step-wise construction of a technological prototype with compact interfaces - with validation in test beam

Technical Realisation The SiW ECAL

2019 - in various configurations with up to 7 SL-board layers

- 1024 channels per layer
- Assembly chains in France and Japan
- Beam tests at DESY and CERN since 2016

• Step-wise construction of a technological prototype with compact interfaces - with validation in test beam

Intermediate slots for Tungsten plates

Technical Realisation The SiW ECAL

2018

2019 - in various configurations with up to 7 SL-board layers

- 1024 channels per layer
- Assembly chains in France and Japan
- Beam tests at DESY and CERN since 2016
- Now a full 15 layer prototype available (15k channels) going to beam in November / December
 - using "Higgs Factory-ready" technology

CALICE - Snowmass '21 IF06, August 2020

• Step-wise construction of a technological prototype with compact interfaces - with validation in test beam

The SiW ECAL - In Beam

• Excellent performance of detector channels

Frank Simon (fsimon@mpp.mpg.de)

The Analog HCAL

 From the first large-scale application of SiPMs to the "SiPM-on-tile" technology

2008 - 2016

Physics Prototype

Frank Simon (fsimon@mpp.mpg.de)

The Analog HCAL

 From the first large-scale application of SiPMs to the "SiPM-on-tile" technology

2008 - 2016

Physics Prototype

Direct coupling of tiles and photon sensors

The Analog HCAL

• From the first large-scale application of SiPMs to the "SiPM-on-tile" technology

2008 - 2016

Physics Prototype

Direct coupling of tiles and photon sensors

SMD SiPMs, modification of direct coupling

The Analog HCAL

• From the first large-scale application of SiPMs to the "SiPM-on-tile" technology

2008 - 2016

Fully integrated concept with embedded front-end electronics, calibration system

CALICE - Snowmass '21 IF06 , August 2020

Physics Prototype

Direct coupling of tiles and photon sensors

SMD SiPMs, modification of direct coupling

The Analog HCAL

• From the first large-scale application of SiPMs to the "*SiPM-on-tile*" technology

Validation of element performance

Fully integrated concept with embedded front-end electronics, calibration system

CALICE - Snowmass '21 IF06 , August 2020

Physics Prototype

Direct coupling of tiles and photon sensors

SMD SiPMs, modification of direct coupling

The Analog HCAL - In Beam

Detector tested extensively in particle beams at DESY & CERN

CALICE - Snowmass '21 IF06 , August 2020

pion shower

muon track

The Analog HCAL - In Beam

Detector tested extensively in particle beams at DESY & CERN

CALICE - Snowmass '21 IF06 , August 2020

muon track

Frank Simon (fsimon@mpp.mpg.de)

Entries

Mean

1.15

1.1

The Analog HCAL - In Beam

The Scintillator ECAL

- Based on (slightly modified) AHCAL technology

CALICE - Snowmass '21 IF06 , August 2020

• 32 layer prototype currently under construction in China in the framework of CEPC (but with LC electronics)

The Scintillator ECAL

- Based on (slightly modified) AHCAL technology

CALICE - Snowmass '21 IF06 , August 2020

• 32 layer prototype currently under construction in China in the framework of CEPC (but with LC electronics)

The Scintillator ECAL

- Based on (slightly modified) AHCAL technology

CALICE - Snowmass '21 IF06 , August 2020

• 32 layer prototype currently under construction in China in the framework of CEPC (but with LC electronics)

Semi-digital HCAL

• Large-area RPCs with integrated electronics

CALICE - Snowmass '21 IF06 , August 2020

Semi-digital HCAL

• Large-area RPCs with integrated electronics

CALICE - Snowmass '21 IF06 , August 2020

... and highly precise mechanical structures.

R&D on Electronic Interfaces

A Common-interest Item

Current AHCAL detector interface card

Current SDHCAL detector interface card

CALICE - Snowmass '21 IF06 , August 2020

Current *SiW ECAL* detector interface card and thin detector unit

- Realize "dead-space free" calorimeter systems with maximum compactness
- Applicable in a variety of different contexts

R&D on Materials and Sensors

Evolving existing concepts, adding new ideas

Position-sensitive silicon sensors

Ordinal silicon pad: charge drift to one pad

PSD: charge drift to P+ pad, then resistively split to electrodes

10s of ps - level timing

GRPCs with < 20 ps time jitter

CALICE - Snowmass '21 IF06 , August 2020

Megatiles for scintillator-based calorimeters

Silicon-based timing sensors for example: Inverse APD as LGAD

Applications of CALICE Technologies

Highly granular calorimeters now widely adopted

• The developments in CALICE have paved the way for a number of applications of highly granular calorimeters and related technologies in HEP

Most prominent: The CMS Endcap Calorimeter Upgrade HGCal

Applications of CALICE Technologies

Highly granular calorimeters now widely adopted

• The developments in CALICE have paved the way for a number of applications of highly granular calorimeters and related technologies in HEP

CALICE - Snowmass '21 IF06 , August 2020

Most prominent: The CMS Endcap Calorimeter Upgrade HGCal

Applications of CALICE Technologies

the way for a number of applications of highly granular calorimeters and related technologies in HEP

CALICE - Snowmass '21 IF06 , August 2020

the way for a number of applications of highly granular calorimeters and related technologies in HEP

CALICE - Snowmass '21 IF06 , August 2020

Frank Simon (fsimon@mpp.mpg.de)

23

Common Test Beams

A key feature of CALICE - and extending to other Collaborations

• SiW ECAL / SDHCAL (2018)

CALICE - Snowmass '21 IF06 , August 2020

Common Test Beams

A key feature of CALICE - and extending to other Collaborations

• SiW ECAL / SDHCAL (2018)

• CALICE and CMS: HGCAL + AHCAL, common tests since 2017

CALICE - Snowmass '21 IF06 , August 2020

 Common beam tests benefit from common approach within CALICE, and from wider networking activities such as EUDAQ2 of AIDA2020 • More common beam tests to come after LS2

24

Common Test Beams

A key feature of CALICE - and extending to other Collaborations

• SiW ECAL / SDHCAL (2018)

CALICE - Snowmass '21 IF06 , August 2020

• CALICE and CMS: HGCAL + AHCAL, common tests since 2017

 Common beam tests benefit from common approach within CALICE, and from wider networking activities such as EUDAQ2 of AIDA2020 • More common beam tests to come after LS2

Performance

A very small selection

CALICE - Snowmass '21 IF06 , August 2020

Energy Resolution

for Hadrons

Energy Resolution

for Hadrons

Particle Separation

With PFAs, reproduced by Simulations

- A key figure of merit for PFA performance
 - studied with overlaid test-beam events for SiW ECAL + AHCAL

CALICE - Snowmass '21 IF06 , August 2020

CALICE

10-GeV track 30-GeV track CALICE data **CALICE** data LHEP LHEP **QGSP_BERT QGSP_BERT**

50 200 250 300 100 150 Distance between shower axes [mm]

Particle Separation

With PFAs, reproduced by Simulations

- A key figure of merit for PFA performance
 - studied with overlaid test-beam events for SiW ECAL + AHCAL

CALICE - Snowmass '21 IF06 , August 2020

Transfer to full Detector Simulations - Here ILD

Software Compensation in Particle Flow

- Particle flow algorithms make use of calorimeter energy at two main points
 - Track calorimeter cluster matching, and iterative reclustering
 - Energy of neutral particles

CALICE - Snowmass '21 IF06 , August 2020

Transfer to full Detector Simulations - Here ILD

Software Compensation in Particle Flow

- Particle flow algorithms make use of calorimeter energy at two main points
 - Track calorimeter cluster matching, and iterative reclustering
 - Energy of neutral particles

CALICE - Snowmass '21 IF06 , August 2020

Exploring the spatial (sub-) Structure

had component

CALICE - Snowmass '21 IF06 , August 2020

meutroms -> lute components

Exploring the spatial (sub-) Structure

had component

neutrons lute components

Exploring the spatial (sub-) Structure

Exploring the spatial (sub-) Structure

CALICE - Snowmass '21 IF06 , August 2020

CALICE - Snowmass '21 IF06 , August 2020

Frank Simon (fsimon@mpp.mpg.de)

29

Finally: Next Steps & New Ideas

Just a few thoughts

others are speculative ideas that may or may not be picked up

Plenty of opportunities!

CALICE - Snowmass '21 IF06 , August 2020

• Incomplete collection of ideas - some of those are already being pursued or are on the agenda,

Exploiting Prototypes and Datasets

Existing and Upcoming

- Fully exploit the capabilities of technological prototypes
 - Timing in hadronic showers
 - Hadronic showers in different absorbers: Steel and Tungsten
 - Combined ECAL + HCAL: Full system performance resolution and topological reconstruction
- \Rightarrow Continuing test beam program with a variety of different detectors

Further Developing CALICE Technology

Sensors, Electronics, Absorber Structures

- Novel sensors for ultra-high granularity pixel sensors for digital ECALs
- Scalability of well-established solutions: silicon, scintillator, RPCs
- Additional twists: Megatiles as scintillator elements, novel materials for improved timing or enhanced neutron sensitivity
- Development of compact, low power interfaces further miniaturization
- Solutions for circular colliders with continuous readout w/o power pulsing
- Integration of interfaces, signals and services
- Highly precise, compact absorber structures
- Geometrical solutions for endcaps, module segmentation

Novel Technologies

Going beyond the current CALICE Portfolio

- Integration of timing layers (~ 30ps for MIPs) in the calorimeter volume
 - Understanding the benefits
 - Sensor options
 - Integration solutions
- Adding new materials:
 - highly segmented crystal calorimeters as options for imaging electromagnetic calorimeters
 - dual readout: scintillation and Cherenkov materials with highly granular readout

Summary

- Highly granular calorimeters are motivated by PFA based event reconstruction to allow optimal combination of calorimetry and tracking
 - In terms of possibilities, we have most likely only looked at the tip of the iceberg: Enormous potential for advanced reconstruction techniques making full use of the 4D or 5D information provided by such detectors
- CALICE has developed imaging calorimetry from an idea to a well-proven concept with established technological solutions suited for full experiments, also addressing integration and production challenges
 - The CMS HGCAL will take this one step further in the extreme environment of the HL-LHC
- Interesting further R&D topics remain in many areas and new collaborators from the US and elsewhere are highly welcome!

CALICE - Snowmass '21 IF06 , August 2020

Performance of Highly Granular Calorimeters

Energy resolution - Electromagnetic

[N.B. Detector optimized for particle separation, not single particle resolution] Scintillator-Tungsten ECAL:

Energy Reconstruction with Software Compensation

Exploitation: Algorithms

- Studying energy resolution in a "real-world" setting: A combined system of SiW ECAL, Scintillator/FE HCAL, Tail Catcher
 - A combination of non-compensating systems with different active and absorber materials and varying longitudinal sampling
- Exploiting granularity: Local energy density can be used to improve energy resolution with software compensation methods

ECAL (30 layers): Absorber: W; 1.4 mm, 2.8 mm, 4.2 mm Active: Si; 525 µm HCAL (38 layers) / TCMT (8+8 layers): Absorber: Steel; ~ 21 mm (including cassettes) Active: Plastic scintillator; 5 mm

CALICE - Snowmass '21 IF06, August 2020

Energy Reconstruction with Software Compensation The Principle

CALICE - Snowmass '21 IF06 , August 2020

- The basis of the technique: Local shower density depends on origin of energy deposits: higher density for electromagnetic subshowers
 - Impact of non-unity e/h can be reduced by assigning
 - energy-dependent weights to hits in global energy sum

Energy Reconstruction with Software Compensation *The Principle*

CALICE - Snowmass '21 IF06 , August 2020

- The basis of the technique: Local shower density depends on origin of energy deposits: higher density for electromagnetic subshowers
 - Impact of non-unity e/h can be reduced by assigning energy-dependent weights to hits in global energy sum

Different Schemes of Hadronic Energy Reconstruction

Understanding the Performance of Highly Granular Calorimeters

- CALICE hadron calorimeters use different schemes for energy reconstruction - depending on readout technology:
 - *scintillator*: analog & software compensation
 - gas: digital (1 bit), semi-digital (2 bit)

N.B.: Semi-digital reconstruction and software compensation are related: both use optimised hit or energy dependent weighting factors

• Different schemes tested on AHCAL data (3 x 3 cm² granularity)

39

Different Schemes of Hadronic Energy Reconstruction

Understanding the Performance of Highly Granular Calorimeters

Understanding Hadronic Showers

Highlights and Expectations

• Hadronic showers are complex:

compact - characterizes regions close to inelastic interactions

sparse - results in MIP-like particles connecting regions of higher activity

extended in time:

- few 10 ns from travel time of MeV-scale neutrons
- longer delays up to µs (and more) from thermal neutron capture and subsequent photon emission

Understanding Hadronic Showers

Highlights and Expectations

• Hadronic showers are complex:

compact - characterizes regions close to inelastic interactions

sparse - results in MIP-like particles connecting regions of higher activity

extended in time:

- few 10 ns from travel time of MeV-scale neutrons
- longer delays up to µs (and more) from thermal neutron capture and subsequent photon emission

- Simulation is crucial to optimise detectors and to analyse data
- provides a new level of information to improve modeling of showers in GEANT4

Understanding Hadronic Showers From 4D to 5D

- New technological prototypes (SiW ECAL, AHCAL) will provide cell-by-cell nanosecond-level timing: Studies of hadronic showers in space, amplitude and time
 - Builds on first studies with a single strip of scintillator tiles

CALICE - Snowmass '21 IF06 , August 2020

41

Understanding Hadronic Showers From 4D to 5D

- New technological prototypes (SiW ECAL, AHCAL) will provide cell-by-cell nanosecond-level timing: Studies of hadronic showers in space, amplitude and time
 - Builds on first studies with a single strip of scintillator tiles

Understanding Hadronic Showers From 4D to 5D

- New technological prototypes (SiW ECAL, AHCAL) will provide cell-by-cell nanosecond-level timing: Studies of hadronic showers in space, amplitude and time
 - Builds on first studies with a single strip of scintillator tiles

- With the data taken this year and in the coming years: Scaling this up from a single strip of cells to a fully instrumented volumes - with both scintillator / SiPM and silicon
- Will further improve understanding of shower structure, and may provide interesting possibilities for $\widehat{}$ improved reconstruction techniques

Imaging Calorimeters for Circular Colliders

Modifications from the CALICE Concept

- On the technological side: Continuous readout, rather than bunch trains as for linear colliders Does not allow to use power pulsing to reduce power budget: Cooling in the active volume?

 - Different ASICS? \rightarrow
 - Amenable to continuous readout
 - Different power optimisation
- A different detector optimisation: More focus on lower energies
 - What is the right granularity in ECAL and HCAL?
 - What is the right trade-off between granularity and electromagnetic energy resolution?
 - What is the right sampling in ECAL and HCAL, and where should the transition be? \bullet

 \Rightarrow Many interesting questions to study - and lots of room for new contributions!

. . .

Summary & Conclusions

- reconstruction with particle flow, and to control backgrounds and pile-up
- important input for the development of reconstruction algorithms and for the validation and further development of GEANT4 shower simulations
- It does not end there: further development to address issues of scalability and realistic constraints in collider environments;
 - Fully embedded electronics with auto-triggering and time stamping
 - Larger active elements
 - Automatic assembly and testing
- And: Interesting challenges specific to circular colliders, still to be addressed!

• Highly granular calorimetry is now widely accepted in HEP - as the solution of choice for optimal event

• CALICE has successfully demonstrated different technologies - the results from the beam tests provide

Scintillator ECAL

Scintillator Strips, SiPMs

use small-pixel SiPMs

CALICE - Snowmass '21 IF06 , August 2020

• Will profit from new HDR generation of MPPCs that are now becoming available

Frank Simon (fsimon@mpp.mpg.de)

44

Extremes in Granularity

A MAPS based SiW ECAL

- In the context of the FoCAL upgrade of ALICE identification and separation of very close-by photons in a dense environment
 - A 24 layer prototype built and tested in beam (39 Mpixel, 30 x 30 μ m²) • 28 X₀, 11 cm deep (3 mm W / layer), 40 x 40 mm² active area, total thickness / layer 4 mm

Extremes in Granularity

A MAPS based SiW ECAL

CALICE - Snowmass '21 IF06 , August 2020

Extremes in Granularity

A MAPS based SiW ECAL

