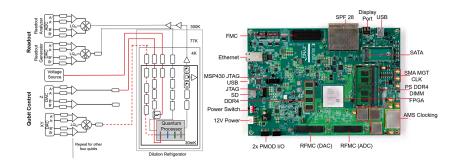
Quantum Sensors (IF1) Readout Needs

Tom Cecil, Kent Irwin, Reina Maruyama, Matt Pyle 20200730

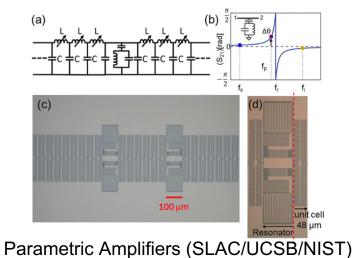
Quantum Sensors Topic

The Quantum Sensors subgroup covers sensors that leverage quantum phenomena to make measurements by manipulating quantum states, entanglement, superposition, etc.

- Ultralight wavelike dark matter
- Scattering /absorption of dark matter particles
- Electric dipole measurements
- Dark energy
- Violations of fundamental symmetries
- New forces or particles


Interfaces

The development of quantum sensor technology overlaps with several other frontiers


- IF7 Electronics RF readout electronics, cryogenic multiplexers, cryogenic amplifiers
- IF2: Photon Detectors TES / MKIDs / Nanowires
- AF5: Accelerators for PBC and Rare Processes RF cavities

Readout Needs

- Room temperature RF control systems
 - More channels
 - Integrated firmware and software
- Cryogenic multiplexing SQUID and CMOS
 - Higher multiplexing density
 - Simplified interfaces
- Cryogenic amplifiers HEMT and parametric
 - Broad bandwidth
 - Low noise
 - Low cost

Mutli-qubit readout (ANL/FNL/MIT/UofC)

Conclusion

- New readout technologies will be needed for emerging quantum sensors
- Currently, HEP is most familiar with superconducting sensors; other technologies (solid state spins, atomic vapors) are beginning to gain use
- Additional requirements will emerge as LOIs are submitted.