

Towards Future Silicon Pixel Detector Readout Chips

IF07 Electronics/ASICs: Flashtalks workshop - 30.07.20

Timon Heim - LBNL

UNIVERSITY O

- Current state of the art RD53B: 153,600 x 50um by 50um pixels, 5.12Gbps bandwidth, serial powering, 500 Mrad radiation tolerance, 4MHz/1MHz (two level) triggering
- Looking at requirements for future colliders (beyond HL-LHC), need:
 - Higher radiation tolerance (specifically for hadron colliders)
 - High pixel density and by that higher bandwidth
 - Faster trigger (also increasing bandwidth requirement)
 - Major issue: low mass high speed data transmission
 - Larger latency, requiring more memory
 - Smarter trigger (prioritized trigger) to offset bandwidth requirement
 - High timing precision (O(100ps) or less is useful)
- Requirements clearly require us to use smaller and more modern CMOS technologies

Foundry Access and Radiation Tolerance

- Access to sub-130nm technology very complicated, prevents us from quickly screening large variety of technologies in terms of radiation tolerance
- Luckily radiation tolerance seems to be getting better the smaller the technology
- 28nm was explored after 65nm and looks suitable for the next generation of readout chips

1µm/60nm	V _{DS} =V _{DD}	V_{T} Var.	SubS Var.	I _{off} (V _{GB} =0)	I _{on} Var. (V _{GB} =V _{DD})
28nm	1.1 V	-13%	15%	537x	+15%
65nm(ref)	1.2 V	+39%	47%	10x	-55%

https://indico.cern.ch/event/681247/contributions/2926579/attachments/1638607/2615422/Enz_ACES_TID_effects_28nm_bulk_CMOS_cenz.pdf

28nm Prototyping Plans at LBNL

- Development targeting replacement of ATLAS ITk inner pixel system (approx. 2030 after HL-LHC Run 4 or 5)
- Focussing on addition of precision timing feature and increased radiation igodottolerance while maintaining all other performance specification
 - First prototype will inform us if this capability is within the capabilities of a lower power analog front-end

Specification	RD53B (65nm)	28nm Prototype	Comment
Pixel size	50x50um2	50x50um2	50% for analog FE
Pixel capcitance	<100fF	<100fF	Depends on sensor layout
Min. stable threshold	600e	600e	X
Min. in-time threshold	1200e	600e	With sensor capacitance
Hit loss from in-pixel pile-up	<1%	<1%	At nominal hit rate of ~3GHz/cm2
Radiation dose	500MRad	1GRad	Delivered at -15°C
Timing precision	12.5ns	100ps	

Why Precision Timing?

- Assume same spacial resolution (50x50µm²) as ITkPixV1 and reasonably achievable timing resolution of 100ps (for the innermost two layers)
 - Have existing sensor technology for 100ps precision (proven rad-hard)
- Can include timing requirement in track reconstruction (time should be consistent for hits coming from the same vertex)
- Use timing information to reduce number of potential track seeds and reject fakes in high pile-up environments
 - Preliminary studies of having timing information from just 2 layers with 100ps timing indicate around 30% reduction in combinatorics

Timon Heim

Backup

BERKELEY LAB

Phase 2 upgrade of ATLAS detector, full replacement of current inner detector with all-silicon Inner Tracker (ITk)

Planned replacement of ITk Pixel Inner System (baseline LS5)

 Two Innermost layers of ITk Pixel detector (Inner System) will need to be replaced in ~2030/2034 → Need to start looking into possible new technologies to improve detector performance beyond current ITk Pixel design