Future Directions in high-speed,
transient waveform digitization
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Input to the Snowmass process



Amplitude [V]

Belle TOF FM PMT signal

Switched Capacitor Array technology

- g

0 m‘l .
02 . f e 2 GSals, 1GHz ABW
04 ] Tektronics Scope
o0s H e 2.56 GSa/s LAB
-0.8 ."?-;

. | WES ASIC | Commercial
Sampling 0.1-6 GSa/s 2 GSals
speed

Bits/ENOBs 16/9-13+ 8/7.4
Power/Chan. <= 0.05W Few W
Cost/Ch. | < $10 (vol) | > 100%




D Belle || Detector

Belle IT KLong and muon detector: e I l t

BEAST (Background Resistive Plate Chambers (barrel outer layers)

S Scintillator + WLSF + SiPM’s (end-caps, inner 2
commissioning detector) barysl Layers)

EM Calorimeter:
Csl(Tl), waveform sampling

\

~—

~—

electrons (7 GeV

[Berylllum beam pipe /’/ i

2cm diameter 7/// 7 z ; | ¥ & b~ -
J //5 4~ : _ 100

2 layers DEPFET + 4 layefs/DSS

positrons (4 GeV)

Belle Il now has .. 2 R
grown to ~947 ST R
researchers from oo

26 countries



Storage Depth in [us] at 10GSa/s
Sampling

What can learn from these developments

* ASIC costing well understood, very competitive!

NIM A591 (2008) 534-345.
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Cherenkov Telescope Array

The Cherenkov Telescope Array (CTA) is the next generation ground-
based observatory for gamma-ray astronomy at very-high energies. With
more than 100 telescopes located in the northern and southern
hemispheres, CTA will be the world’s largest and most sensitive high-
energy gamma-ray observatory.




GCT Camera (CTA) — Gearing for prod.
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Technology has room to improve

1GHz analog bandwidth, 5GSa/s Simulation includes detector response
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Now pushing to the femtosecond regime

Pushing sampling speed and analog bandwidth
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Huge data challenge: online
reduction (many TB/s)

Masks: ~20 um Au on 600 pm
CVD diamond substrate

Water-cooled mask
holder

US~-Japan Collaboration (U. D Si pixel detect
Hawaii, SLAC, Cornell U.) A e
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High—speed readout electronics for the X-ray monitor,

for the X-ray monitor, being being developed at SLAC.
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Snowmass kick-off July 2020



Low power: Lunar cosmic-ray radio geology




Strategy for Extreme Low Power operation

Only power what
actually need

CMOS intrinsically zero
power when idle

Strategy works for
either strip or pixel
geometry

Places to reduce power:
» Remove FPGA

» Low-power
0rocessing

» Single ASIC




Future directions (summary)

. Femtosecond timing to provide
a. Reduction of spatial granularity (8M -> 4k ch.)
b. “streak camera” diagnostics

. Feature extraction (marry more digital processing
with power of SCA) for ‘up front’ data reduction

. As scale to large experimental systems, cost and
POWER are huge (existential) issues
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