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New Paradigm for ASIC Development:
Physics Driven Hardware Co-design

● Algorithm development based on Physics data

● hls4ml simplifies the design of on-chip ML accelerators

■ | hls4ml directives | << | HLS directives |

■ C++ library of ML functionalities optimized for HLS

● TMR4sv_hls

■ Triple Modular Redundancy tool for System Verilog & HLS

Primary tradeoffs:
Speed, area, latency



Autoencoder: Reconfigurable data compression
• Enable edge compute : Data compression of detector output using deep neural networks
• Programmable and Reconfigurable: ability to update weights based on real-time feedback (ms)
• Training adaptable to changing detector conditions (pileup), different geometries, lost channels, etc.

• Unsupervised learning (2.375nJ/inference, every 25ns, 15x compression, < 4mm2) 
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Optimization / Design Space exploration
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Fig. 1. Architecture overview showing data collection from detector to off-
chip FPGA

III. DESIGN METHODOLOGY AND METRICS

The design and verification flow for implementing the
AI Autoencoder is shown in Figure 2. The open-source
quantization-aware platform QKeras is used for model training
required for the algorithm development and also for generating
stimuli for verification. The output of this stage is further
processed by hls4ml compiler which translates the QKeras
model description into a resultant C++ description. This is
then converted to an hardware RTL description in Verilog
utilizing Mentor Catapult HLS. Several verification steps are
undertaken at this stage to identify bugs and improve per-
formance. Design rules are checked on the C++ specification
by performing static analysis (Mentor CDesignChecker); C
simulation and code coverage (Mentor CCov) are run; finally a
C&RTL co-simulation is performed for equivalence checking.
The RTL Verilog code subsequently follows the traditional
on-chip digital implementation method undergoing various
simulation steps to ensure optimized power, area and speed.
The final design IP block is generated by creating a component
database and layout to be incorporated in the ECON ASIC top
level assembly.

Table I lists the metrics, number of iterations along with the
design (D) and validation/verification (V) time spent at each
stage of the implementation flow. The HLS model description
requires approximately 1,000 lines of code. This stage is
fast (⇠1 second) but requires several hundred iterations to
optimize the algorithm performance, driven by the physics
goal. The HLS stage determines the level of parallelism in
the design, choice of pipelining, resource reuse factor, and
clock frequency. This directly impacts the total area, power
consumption, and the latency of the design. One hot encoding
of finite state machines for robust Single Event Upset (SEU)
prevention also needs to be introduced at this stage. Clock
gating is employed to save system level power. The digital
implementation stage is time intensive requiring 65 hours of
design and verification to meet the speed and area constraints
with fewer iterations.

IV. CONCLUSIONS

A design methodology from Machine Learning model gen-
eration to ASIC IP block creation has been presented. A low
power, low latency reconfigurable AI autoencoder based on
a convolutional neural network has been implemented in a

Fig. 2. Design and verification flow

TABLE I
DESIGN (D) AND VERIFICATION (V) METRICS

STEP TIME ITERATIONS SIZE

Model generation (D) 0.98s
50-100 1089 C++ LoC

C simulation (V) 0.14s
High-level synthesis (D) 00:30:17

2-3 39,716 Verilog LoC
RTL simulation (V) 00:00:46
Logic synthesis (D) 06:04:19

6

900,810 Gates
Gate-level simulation (V) 00:25:19
Place and route (D) 71:03:53

1,026,387 GatesPost-layout simulation (V) 00:51:41
Post-layout parasitic sim-
ulation (V) 01:51:30

Layout (D) 00:20:00
1 12,768,389 Transistors

LVS & DRC (V) 01:00:00

65 nm LP CMOS process, designed to withstand radiation
environments of up to 200 MRad. The ECON ASIC is in the
process of being submitted for manufacture and test results
will be presented at the conference.
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● Power consumption ~ 1pJ/bit - center to periphery ( ~ 5mm): 
routing capacitance

○ Why not do local calculations???

● Feature extraction and data compression

● Hardware driven co-design of algorithm

Synergistic Applications 
AI on edge to AI in pixel
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Towards heterogenous system on-chip 

OPTIMIZATION FOR POWER
• Analog Mixed-Signal Kernels
• In-memory compute

Lowest Power Implementation of DNN
• Photonic based solution (NO Reconfigurability)

Electronic – Photonic Integrated Solution ?


