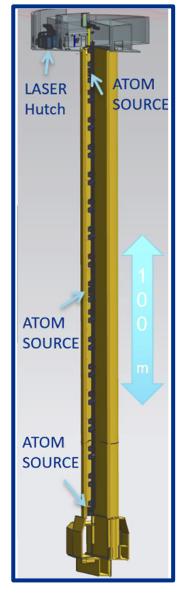


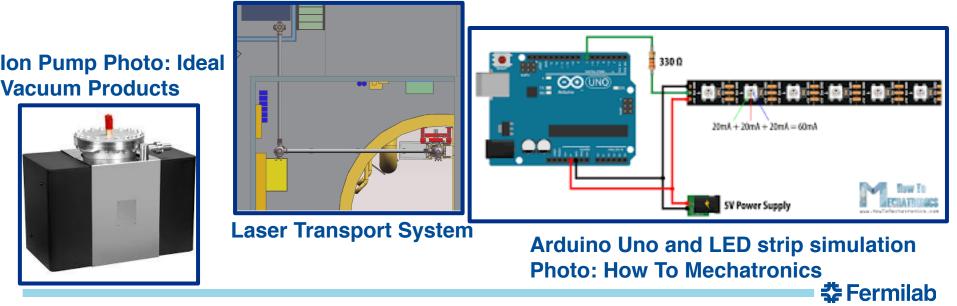
MAGIS-100 Laser Transport Vacuum Simulations and LED Atom Tracker


Jordan Aasman Mentors: Linda Valerio, Jesse Batko, Beth Klein Intern Poster Session 5 August 2020

Background

- Matter-wave Atomic Gradiometer
 Interferometric Sensor
 - Dark matter and new forces
 - Advancing quantum science
 - Gravitational wave detector development
- Atom interferometry

Atom Source Photo: Stanford University


100m shaft Sr atoms will traverse

My Projects

- Vacuum Simulations for the Laser Transport System (LTS)
 - Compare low conductance designs of lens mounts
 - Characterize pressure profile of the LTS

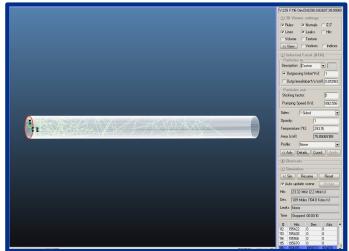
- LED Atom Tracker
 - Propose materials to implement in the project
 - Design software for the different science modes

Vacuum Simulations for the Laser Transport System (LTS)-Purpose

Ensure vacuum system has low Inside look at the LTS enough pressure to meet experimental requirements High Vacuum Laser goes through the Δ LTS to the top of the shaft **Ultra-High** Vacuum

🛟 Fermilab

4 8/4/20 Jordan Aasman I Intern Poster Session


Vacuum Simulations for the Laser Transport System (LTS)-Procedure

NX 🖳 🤊 🕫 🖈 🖻 🛍 🛷 😚	vitch Window 🧧 Window • 🕫	NX 11 - Modeling - [model1.prt (Modifi	ed)] SIEMENS _ 🗆 X
File Home Assemblies Curve Analys		Application Fermi 3Dconnexion	Find a Command 🖉 🗃 💩 🤪 🗕 🗗 🗙
Sketch	Pattern Feature Pattern Feature Pattern Feature Pattern Feature Pattern Feature Pattern Feature	re Move	Add Assemblies
O Part Navigator			
Image: Second			
B 1			
2 2			
< # > Depaile Detaile Preview V	Ľ.		
Select objects and use MB3, or double-click an object			(B)

1. Create vacuum tube in NX

Home			Page La													2	Share Ç	Comments
	X Cut []] Copy ≪ Forma														AutoSum V A FII V ZV V Clear V Filter			
02	÷×	√ fx	0.71504:	_											_			
<u> </u>	E	F	G	н	I.	1	ĸ	ι	м	N		0	P	Q	R	S	T	U
2	Node B	x	Y	z	Element	Element Length (in)	Element Length (m)	Element Name	Element ID Number	ID Number			Cross Sectional Area (m ²)(Perimeter of Vacuum piece)	ANSYS Conductance (m ² /s)	Element Name			
2 0		0.17	0	0	1	6.54125	0.17	HVTube	1	1	0	8	0.4732					
3 0		0.33	0	0	2	6.54125	0.17	HVTube	1	2	0	1	1.0000	0.0300	Ion Pump			
4 0	4	0.50	0	0	3	6.54125	0.17	HVTube	1									
5 0		0.66	0	0	4	6.54125	0.17	HVTube	1									
6 0	6	0.83	0	0	5	6.54125	0.17	HVTube	1									
7 0	7	1.00	0	0	6	6.54125	0.17	HVTube	1									
8 0		1.16	0	0	7	6.54125	0.17	HVTube	1									
9 0		1.33	0	0	8	6.54125	0.17	HVTube	1									
10 0 11 12 13 14	10	1.00	-1	0	9	39.37	1.00	Ion Pump	2									
13 14																		

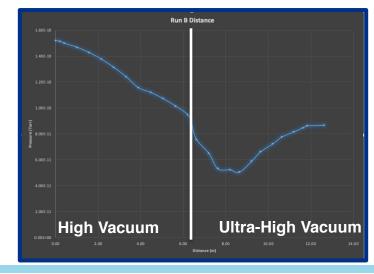
3. Complete spreadsheet with nodes and conductance data, spreadsheet format courtesy of Jesse Batko, Fermilab

2. Find conductance in Molflow

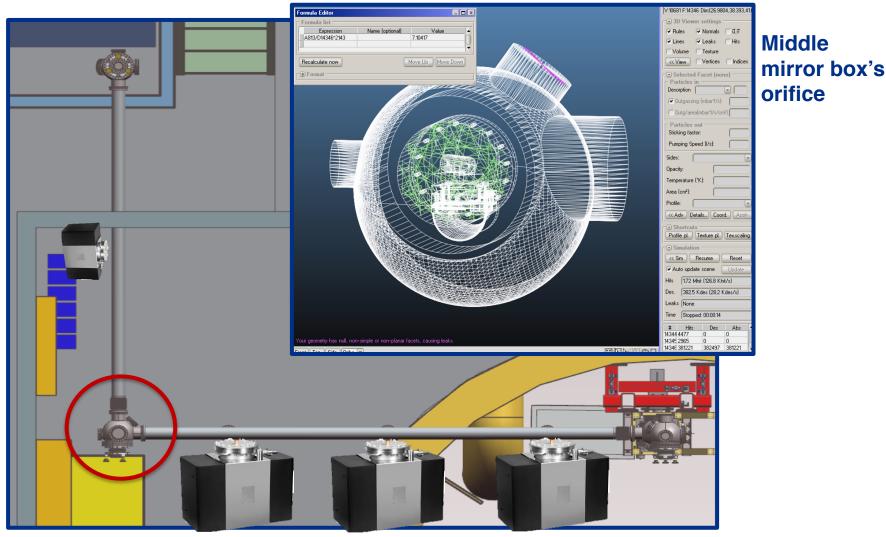
						= = · = = ·					al Format Cell g as Table Styles			
415 ÷	; × ~													
A 1	В	c	D	E	F	G	н			ĸ	L	м	N	0
Node	X	Y	Z		Item	Element	Node A	Node B	Pump (Y or N)	Node Input (4)	Element Input	Pump Input (8)	Element Loads (Torr*L/(s*cm*2))	Element Load
1	0.00	0.00	0.00		HVTube	1	1	2	3 N 4 N	N,1,0,0,0	E,1,2		6.70E-13	8.9326E- 8.9326E- 8.9326E-
2	0.17	0.00	0.00		HVTube	2	2	3		N,2,0.16614775,0,0	E,2,3		6.70E-13	
3	0.33	0.00	0.00		HVTube	3	3	4		N,3,0.3322955,0,0	E,3,4 E.4.5		6.70E-13 6.70F-13	8.9326
4	0.50	0.00	0.00		HVTube	4	4	6	N	N,4,0.49844325,0,0			6.70E-13 6.70E-13	8.9326E- 8.9326E-
6	0.66	0.00	0.00		HVTube	6	5	6	N	N,5,0.664591,0,0 N.6.0.83073875.0.0	E,5,6 E.6.7		6.70E-13 6.70E-13	8.93268
5	1.00	0.00	0.00		HVTube	7	5	8	N	N,5,0.85073875,0,0 N,7,0.9968865,0,0	E,5,7 E,7,8		6.70E-13 6.70E-13	8.93268
	1.16	0.00	0.00		HVTube	8	8	9	N	N.8.1.16303425.0.0	E,7,8 E,8,9		6.70E-13	8.93268
8	1.16	0.00	0.00		nviube	8	8	3	N	N,8,1.16303425,0,0 N,9,1.33,0,0	c,8,9		0.70E-13	8.93268
1 10	1.00	-1.00	0.00		Ion Pump	9	7	10	Y	N,10,1,-1,0	E.7.10	D,10,Temp,0		
2 10	1.00	-1.00	0.00		ion Pump	9	/	10	r	n,10,1,-1,0	E,7,10	0,10,1emp,0		
3														
5														

4. Convert vacuum units to thermal units and generate code

Vacuum Simulations for the Laser Transport System (LTS)-Procedure


ote ×	× ts <u>H</u> elp												
Solution is done!	- I I	Home	Insert Draw Page	Layout Formulas Da								년? Share	💭 Comme
			Cut Calibri (Bor								×		
Close			∬ Copy ↓ ≸Format B I U						Conditional Form			Sort & Find & Ideas	
Menu ®			$\frac{A}{V} \times \sqrt{f_X}$										
1	ANSYS		A B	с	D	E	F	G	н		ј к		м
eprocessor	R19.1								Run 1		Run 2		
ution STEP=1 SUB =1 bx X	JUL 7 2020	9 * B 2											
eHist Postproc TIME=1	15:01:35		Fie	al Focus Run A		Final Foc	ur Pup P						
M Tool RSYS=0		日 4 5 Dist 6 0	Pressure (Pa		Dist		Pressure (Torr)	Dist	NODE	TEMP	NODE	TEMP	
stion Opt SMX =.116E-04			1.00 1.16			1.16E-05	8.67E-08	0.00	1	1.16E-05	1	1.16E-05	
ISOL Command	×		.17 1.15			1.15E-05	8.66E-08	0.17	2	1.15E-05	2	1.15E-05	
			.33 1.15			1.15E-05	8.64E-08	0.33	3	1.15E-05	3	1.15E-05	
TEMP NODAL SOLUTION PER NODE		9 0	.50 1.15	-05 8.60E-08	0.50	1.15E-05	8.60E-08	0.50	4	1.15E-05	4	1.15E-05	
** POST1 NODAL DEGREE OF FREEDOM LISTING *****			0.66 1.14	-05 8.55E-08	0.66	1.14E-05	8.55E-08	0.66	5	1.14E-05	5	1.14E-05	
STEP= 1 SUBSTEP= 1 E= 1.0000 LOAD CASE= 0			1.13			1.13E-05	8.48E-08		6	1.13E-05	6	1.13E-05	
DE TEMP			00 1.12			1.12E-05	8.39E-08		7	1.12E-05	7	1.12E-05	
10.11558E-004 20.11548E-004 30.11517E-004 40.11517E-004 40.11455E-004			16 1.12			1.12E-05	8.42E-08	1.16	8	1.12E-05	8	1.12E-05	
3 0.11517E-004 4 0.11465E-004			33 1.12	-05 8.42E-08	1.33	1.12E-05	8.42E-08	1.33	9	1.12E-05	9	1.12E-05	
7 0.11793E-004 6 0.11301E-004 7 0.11108E-004 8 0.11219E-004		Q 15	Max:	8.67E-08		Max:	8.67E-08						
7 0.11188E-004 8 0.11219E-004 9 0.11220E-004		4 [®] 1 ⁶ 1 7	Min:	8.39E-08		Max: Min:	8.39E-08						
9 8.11229E-084 18 8.0080		◎▶ 18	Avg:	8.54E-08		Avg:	8.54E-08						
UM ABSOLUTE VALUES		a 19											
0.11558E-004		\$ 20											
		<u>®</u> • 21											
		8 22											
	MN	<u><u></u> <u></u> </u>											
		<u>24</u>	Data Magis Cor	paring Runs Run A Nod	Dun R.h	Judan Dun A Diel	Due B Diel						_
0.126E-05	53E-05 .506E-05 .759E-05 .101E-04 .379E-05 .632E-05 .885E-05 .116E-04		Data magis cor	panng Huns - Hun K Hou	65 000000	iodes Piun A bisc	Hun B Dist.					: :•-	

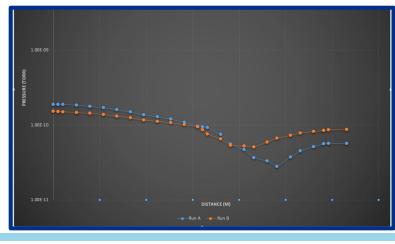
5. Run thermal simulation in ANSYS


6. Convert data back to vacuum

Fermilab

7. Plot pressure distribution

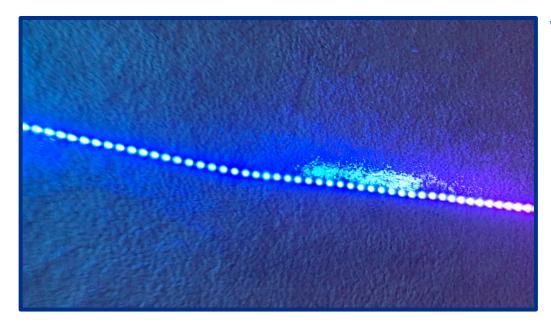
Vacuum Simulations for the Laser Transport System (LTS)-Variables



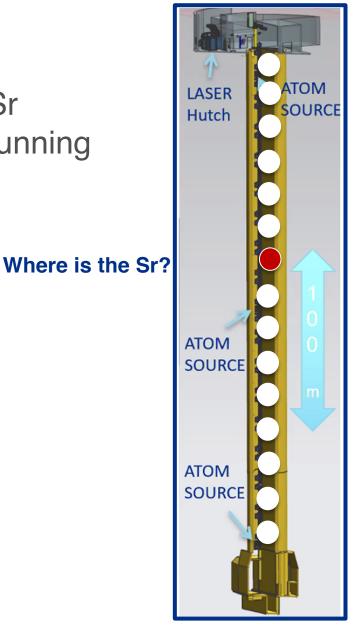
lon pump speed and placement

Vacuum Simulations for the Laser Transport System (LTS)-Results

Initial design: 4 ion pumps 0.8" orifice holes


Final design: adjusted orifice size to remove an ion pump

Final proposed designmeets experimental requirement at 8.67E-11 torr

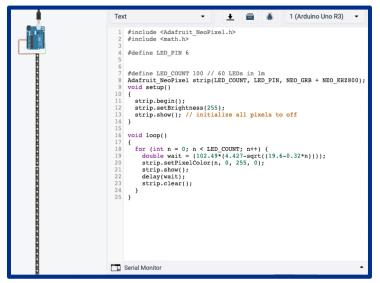

‡ Fermilab

LED Atom Tracker-Purpose

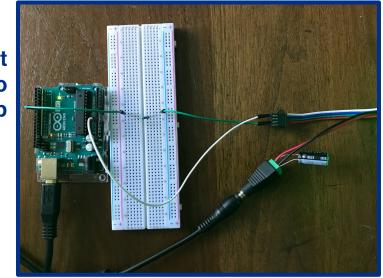
- Allow spectators to see where the Sr atoms are while the experiment is running
- Public outreach

Programmable LEDs in action

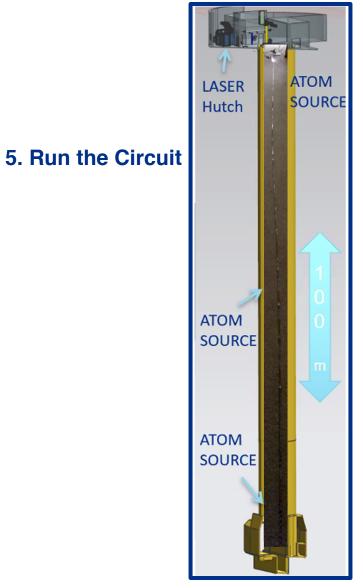
LED Atom Tracker-Procedure


The function DelayTime[MaxHeight_LEDDensity_] calculates a function to implement into the code using the height and LED density of the LED strips: In[3]:= DelayTime[5000, 60] nth LED time of 1st flash = 102.041 (9.89949 - Re[$\sqrt{98. - 0.326667 n}$]) milliseconds n^{th} LED time of 2nd flash = 1010.15 + 58.3212 $\sqrt{300 - n}$ milliseconds n^{th} LED delay time = -102.041 Re[$\sqrt{98. - 0.326667 n}$] + 102.041 Re[$\sqrt{98.3267 - 0.326667 n}$] milliseconds Minimum delay time (bottom of trajectory) = 1.68 milliseconds Maximum delay time (top of trajectory) = 58.3 milliseconds Flash Time Delay Time Flash time Tf (ms) Delay time (ms) 60 200 50 150 Out[3]: 40 Tf2 30 1000 Tf1 20 500 LED n LED n 50 100 150 200 250 300 50 100 150 200 250 300

1. Calculate atoms' trajectory, Mathematica Notebook courtesy of Sam Carman, Stanford

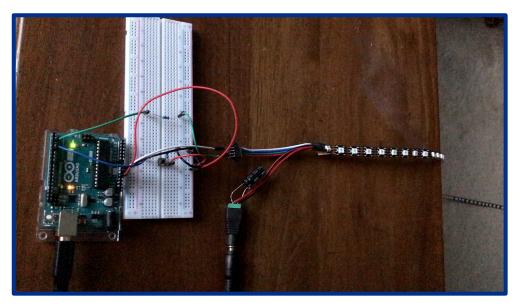

3. Create program in Arduino Integrated Development Environment (IDE)

4. Connect Arduino to LED strip



2. Design in TinkerCAD

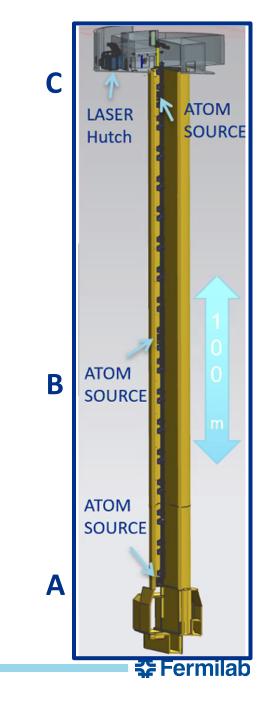
LED Atom Tracker- Procedure


LED Atom Tracker- Results

- 5m segment complete
 - Software programs
 - Stable Connections
 - Start on button press
- Power requirements

Recommendations on how to scale Connection

Connection for power injection


Circuit starting on button press

LED Atom Tracker- Future

- Scale up to 100m
 - Power injection
- Safety specifications
- Software for all science modes

MAGIS-100 Collaborators

