RPV-UDD SUSY Searches at the LHC

Nadja Strobbe University of Minnesota

Snowmass EF08 Meeting, Aug 6, 2020

RPV with UDD couplings

$$W_{RPV} = \frac{1}{2} \lambda_{ijk} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k + \frac{1}{2} \lambda''_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k$$

UDD coupling lead to following topologies:

- single squark production
- squark direct decay to 2 quarks
- gluino decay to 3 quarks via (off-shell) squark
- neutralino/chargino decay to 3 quarks via (off-shell) squark

Usually, a single nonzero coupling is assumed (strongest indirect constraints on product of couplings)

Effect of coupling strength

Production:

- For pair-produced sparticles, RPV coupling strength does not enter into the production cross section
- Single squark production cross section can dominate over pairproduction if coupling is large enough, O(1)

Decay:

- Coupling strength affects sparticle lifetime
- If λ large enough, decays are prompt, and searches are not sensitive to specific value of the coupling
 - Will focus on prompt searches in this talk
- If λ small (~10⁻⁵), then sparticles will travel noticeable distance
 - Searches such as displaced vertices, stopped particles, HCSP, displaced jets, etc have good sensitivity

Typical LHC signatures

UDD coupling leads to many fully hadronic final states without missing transverse momentum

- ⇒ Resonance searches are quite powerful:
 - pair-produced 2-jet resonances
 - pair-produced 3-jet resonances
 - pair-produced 4/5-jet resonances

Can also end up with more complicated decay topologies:

- Long cascade decays if RPV coupling is small enough that RPC decays dominate until one reaches the LSP
- Top quarks in the decay chain
- ⇒ Exploit large multiplicity, internal structure, etc

Challenge: large QCD and/or ttbar backgrounds

Pair-produced 2-jet resonances

- Signature: squark → qq'
- Existing searches usually interpreted in the context of top squarks with coupling $\lambda_{312}^{''}$
 - Exclude up to $m_{\tilde{t}} = 525 \text{ GeV}$
- Can extend sensitivity for $\lambda_{323}^{''}$ by making use of btagging
 - Exclude up to $m_{\tilde{t}} = 640 \text{ GeV}$

Pair-produced 3-jet resonances

- Signature: gluino → qqq
- Constrains all $\lambda_{ijk}^{''}$ for i,j,k=1,2
- Uses data scouting to access the low mass region and regular triggers for high mass region
- Uses lack of structure in the gluino decay products via Dalitz plot
- Excludes gluinos up to 1.5 TeV

Pair-produced ≥4-jet resonances

- Signature: cascade decay of squark or gluino through a higgsino to 4 or 5 non-top quarks
 - Dominant if higgsino is lighter than squark/gluino and λ'' is small
- Particles are clustered into 2 large jets that are investigated using N-subjettiness au_{42} and au_{43} , and have small mass asymmetry

Gluinos between 100—1400 GeV and squarks between 100—700 GeV (single species) are excluded

Including top quarks

- Most of the paired N-jet resonance searches assume that the involved quarks are not top quarks
- When top quarks are involved, a few things change:
 - Leptons appear, lowering the fully hadronic branching fraction, likely resulting in a weakened limit
 - More jets can appear, which can spoil the reconstruction technique used
 - Signal can appear in ttbar control regions
- Dedicated searches for RPV decays involving top quarks exist
 - For gluino decays, same sign top quarks, and thus same sign leptons can appear
 - Generally, searches exploit presence of many jets and bjets

Same-sign dilepton search

Classic SUSY search in final state of SS dilepton and multilepton

Very small SM background enables search without relying on

presence of missing transverse momentum

1-lepton search with MJ

- Signature:
 - CMS: gluino \rightarrow tbs via $\lambda_{323}^{''}$
 - ATLAS: gluino \rightarrow 3q or 5q via cascade decay, all $\lambda_{ijk}^{''}$ equally
- Reconstructs large-R jets, and uses the sum of their masses M_J to discriminate signal from background
- Also exploit large jet and bjet multiplicity, although searches do include 0b regions as well

1-lepton with large jet multiplicity

- Final state: 1I, many jets, either 0 or ≥3 bjets
- Targets broad range of signal models, all featuring very large jet multiplicity
- Backgrounds are modeled using parameterized extrapolations for Njets and Nbjets, based on jet scaling

Summary of current reach and prospects for future colliders

- In the above mentioned decay modes, gluinos are generally excluded up to ~1.5 TeV, and squarks up to ~500-700 GeV, with some signatures providing stronger constraints
- So, there is still room for TeV-scale stops with RPV UDD decays, as well as gluinos near 2 TeV
- RPV UDD scenarios have not been as well studied in the context of future colliders compared to RPC scenarios.
 - Most recent studies from previous Snowmass (afaik)
 - Clearly an area where Snowmass 2021 can go beyond previous studies
 - Will (any/all) future collider option be able to rule out "natural" SUSY with RPV decays?

Questions for discussion

- There is quite good coverage for direct RPV decays, e.g. $\tilde{q} \to qq, \tilde{g} \to qqq$. Does this also hold when other sparticles are within reach, resulting in more complicated cascade decay chains for small RPV couplings?
- What about RPV decays of neutralinos/charginos, in case they are the only sparticle light enough to be produced? pair-produced 3-jet resonance search should have some sensitivity, but mass reach not currently known
- What are the challenges of RPV searches at future colliders?
 Trigger issues? Resolution of substructure in boosted jets?

Questions for discussion

- Has the very low stop/gluino/... mass region been fully covered for all UDD scenarios?
 If not, is this an opportunity for a lepton collider?
- Should we (re)consider resonant squark production?
 - Are the large $\lambda_{ijk}^{''}$ couplings needed for this production mode to dominate already excluded via other means?
 - Are there scenarios that the dijet searches would miss?
- Are there any uncovered scenarios? Could they be fully covered at the (HL)LHC, or is a future collider needed?