

Searches for RPV SUSY with LNV at the LHC and Beyond

Ian Dyckes, University of Pennsylvania

Detector Signatures

Minimal Supersymmetric Standard Model with RPV:

R-parity is not a symmetry of the most general MSSM Lagrangian.

$$W_{R_p} = \mu_i H_u L_i + \frac{1}{2} \lambda_{ijk} L_i L_j E_k^c + \lambda'_{ijk} L_i Q_j D_k^c + \frac{1}{2} \lambda''_{ijk} U_i^c D_j^c D_k^c$$
Lepton number violating

Baryon number violating

Consequences of RPV:

- LSP can carry charge and decay to SM particles.
- Strength of couplings can lead to various detector signatures.

Outline

- 1. Prompt searches:
 - CMS SS/3L
 - ATLAS 4L
 - ATLAS trilepton resonance
 - ATLAS stop
- 2. Long-lived searches:
 - ATLAS displaced vertex + muon
 - CMS displaced jets
 - CMS displaced jet tagger
 - ATLAS DV+OS
- 3. Setting limits on RPV coupling strengths
 - ATLAS RPC meets RPV
- 4. Projections for future colliders

Search for BSM physics in events with jets and same-sign leptons

arXiv:2001.10086

Final State:

- Require either 2 same-sign leptons or at least 3 leptons.
 - And at least 2 jets.
- Rarely produced by SM, but common in many BSM scenarios.

Target Models:

- Interpretations for a wide range of RPC and RPV SUSY models.
- Two RPV benchmark models with gluino LSPs:
 - 5-body decay via LQD coupling (λ').
 - 3-body decay via UDD coupling (λ'') .

Signal Region Strategy:

- Over 150 orthogonal SRs, binned in various kinematic variables:
 - Lepton $p_{\rm T}$, charge, multiplicity.
- $p_{\mathrm{T}}^{\mathrm{miss}}$, H_{T} , $m_{\mathrm{T}}^{\mathrm{min}}$.

Jet and b-jet multiplicity.

• On/off Z mass (3L SRs).

Search for BSM physics in events with jets and same-sign leptons

arXiv:2001.10086

Results:

- No significant deviation from SM seen.
- Simultaneously fit all SRs → place exclusions on the two benchmark RPV models.
 - Exclude gluino masses up to 2.1 TeV for 5-body decay (left) and 1.7 TeV for 3-body decay (right).

ATLAS SS/3L:

Only has UDD interpretation, but should be sensitive to LQD as well (see backup).

Search for supersymmetry with four or more charged leptons

ATLAS-CONF-2020-040

Targeted RPV models:

- Bino $\tilde{\chi}_1^0$ pairs decaying via LLE coupling $(\lambda) \rightarrow 4$ leptons.
 - Wino $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} + \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$, slepton, and gluino production
- Two decay scenarios:

Scenario	${ ilde {\mathcal X}}_1^0$ branching ratios				
		$e^{\pm}\mu^{\mp}\nu$ (1/2) $\tau^{+}\tau^{-}\nu$ (1/2)			
$i, k \in 1,2$					

SR strategy:

- Define SRs with varying $N_{\rm e,\,\mu}$ & $N_{\rm \tau}$ requirements.
 - Such that $N_{\rm e, u} + N_{\tau} \ge 4$.
- Bin in $N_{\rm b}$ and $m_{\rm eff}$ = scalar p_T sum of all leptons, jets, and $E_{\rm T}^{\rm miss}$.
- Dedicated inclusive SR with N_{e, µ}≥ 5.

Search for supersymmetry with four or more charged leptons

ATLAS-CONF-2020-040

Targeted RPV models:

- Bino $\tilde{\chi}_1^0$ pairs decaying via LLE coupling $(\lambda) \rightarrow 4$ leptons.
 - Wino $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} + \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$, slepton, and gluino production
- Two decay scenarios:

Scenario	$ ilde{\mathcal{X}}_1^0$ branching ratios				
			$\mu^{+}\mu^{-}\nu (1/4)$ $\mu^{\pm}\tau^{\mp}\nu (1/4)$		
$i, k \in 1,2$					

SR strategy:

- Define SRs with varying $N_{\rm e,\,\mu}$ & $N_{\rm \tau}$ requirements.
 - Such that $N_{\rm e,\,\mu} + N_{\rm \tau} \ge 4$.
- Bin in $N_{\rm b}$ and $m_{\rm eff}=$ scalar p_T sum of all leptons, jets, and $E_{\rm T}^{\rm miss}$.
- Dedicated inclusive SR with $N_{e, \mu} \ge 5$.

Search for supersymmetry with four or more charged leptons

- No significant deviation from SM seen.
- Simultaneously fit all SRs → place exclusions on [3 NLSPs] × [2 LEE coupling] scenarios.

Scenario	$ ilde{\mathcal{X}}_1^0$ branching ratios			
		$e^{\pm}\mu^{\mp}\nu$ (1/2) $\tau^{+}\tau^{-}\nu$ (1/2)	• •	

Trilepton resonances from chargino & neutralino pair production

Model:

- Inspired by the B L MSSM with RPV [1][2].
 - Add $U(1)_{B-L}$ symmetry to the MSSM.
 - Break spontaneously → R-parity and L-violation.
- Wino $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_1^0$ are possible LSPs in this model.
 - Decay promptly to a SM boson and a lepton/neutrino.
 - BRs to different lepton flavors related to the neutrino hierarchy.

SR Strategy:

- Targets wino $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} + \tilde{\chi}_1^{\pm} \tilde{\chi}_1^{0}$ production.
 - Require one $\chi_1^{\pm} \to Zl \to lll$ decay \to trilepton resonance.
 - No constraints on the decay of the other $\tilde{\chi}_1^{\pm}/\tilde{\chi}_1^0$.
- Attempt to reconstruct the second wino decay.
 - Number of leptons and reconstructed bosons defines 3 SRs.

Trilepton resonances from chargino & neutralino pair production

ATLAS-CONF-2020-009

- No significant excess seen → set limits.
- Simultaneously fit the m_{Zl} distributions in the 3 SRs.
- Scan over $\tilde{\chi}_1^{\pm}$ / $\tilde{\chi}_1^0$ decay BRs to bosons & lepton flavors.
 - For each sampled point in lepton BR space, limits are set on wino mass as function of BR(Z).
- Exclude wino masses up to 950 GeV for lepton universal decays.

Search for B - L RPV top squark decays

Phys. Rev. D 97 (2018) 032003

Model:

- Also inspired by the B L MSSM with RPV [3].
 - $U(1)_{B-L}$ spontaneously broken by a RH sneutrino VEV.
- Targets $\tilde{t} \rightarrow b + l_i$ via LQD coupling (λ_{i33}') .
 - BRs to leptons related to neutrino mass hierarchy.

SR strategy:

- Require at least 2 leptons and 2 jets (at least 1 b-tagged).
- Pair leptons with jets, minimizing mass asymmetry:

$$m_{b\ell}^{\text{asym}} = \frac{m_{b\ell}^0 - m_{b\ell}^1}{m_{b\ell}^0 + m_{b\ell}^1}$$

• Define two overlapping SRs: $m_{bl}^0 > 800$, 1100 GeV.

Results:

- No excess seen → set limits on stop mass.
- · Scan over BRs to different lepton flavors.

Marshall, Ovrut, Purves, Spinner

Searches for long-lived particles with displaced vertices and muons

Model:

- Stop LSP decays via LQD term (λ') to muon and d/s quark.
- Small $\lambda' \to \text{stop hadronizes}$, has displaced decay.

Signature:

- Muons with large impact parameters.
- Displaced vertices with 4 mm $< r_{\rm DV} < 300$ mm (before the SCT).

Managing SM background:

Veto DVs with positions consistent with the detector (active + support/services).

- · No events above expected background.
- Set limits in the $m_{\tilde{t}}$ vs $\tau(\tilde{t})$ plane.

Searches for long-lived particles decaying into displaced jets

CMS-PAS-EXO-19-021

Target Models:

- Many BSM models with LLPs decaying to jets.
- RPV models:
 - $\tilde{t} \to ld_k$ via LQD (λ') and $\tilde{g} \to tbs$ via UDD (λ'') .
 - $\tilde{t} \to dd$ via dynamical RPV coupling (η/M) .

Long-lived \tilde{g} , off-shell \tilde{t} .

Signature:

- Dijet systems matched to a displaced vertex.
 - Transverse displacements $r_{\rm DV} \lesssim 55$ cm.
 - Before outer barrel of the silicon strip tracker.

- Expected $0.75 \pm 0.44 \text{ (stat)} \pm 0.39 \text{ (syst)}.$
- Observed 1 event with a DV with $r_{DV} = 26$ cm.
 - Close to a silicon strip layer (within ~1 cm).

Searches for LLPs with displaced vertices and OS leptons

Phys. Lett. B 801 (2020) 135114

Model:

- Neutralino LSP decays via LLE term (λ) to 2 OS leptons + neutrino.
 - Small $\lambda \to \tilde{\chi}_1^0$ decay is displaced.

Strategy:

- Search for 2 OS leptons forming a displaced vertex.
 - $2 \text{ mm} < r_{DV} < 300 \text{ mm}$.

- No events above expected background.
- Set upper limits on cross section as function of $\tilde{\chi}_1^0$ lifetime.
- Separate interpretations for:
 - Non-zero $\lambda_{121} \rightarrow ee + e\mu$ final states.
 - Non-zero $\lambda_{122} \rightarrow e\mu + \mu\mu$ final states (shown).

Summary of Targeted Simplified Models

Prompt Long-lived

Simplified models:

- Shown many exclusion contours for simplified models.
 - Assume some (N)LSP & production mode.
 - Turn on a single RPV coupling.
- Prompt searches assume coupling is large enough for prompt decays.
 - Set limits on production xsec vs LSP mass.
 - Or perform a 2D mass scan (LSP vs NLSP).
- Long-lived searches assume coupling is small enough for a displaced decay.
 - Set limits on LSP mass vs lifetime.
- How do these exclusions translate to limits on the coupling strength?

Filling in the Gaps

Setting limits on coupling strength:

- For LL searches, can convert lifetime limits → coupling limits via an equation.
 - May depend on other parameters (virtual sparticle masses, mixings).
- For prompt searches, need reinterpretations.
 - Use RPV signals with variable coupling strengths.
 - Additional systematics for displaced signals.
- Analyses targeting RPC SUSY or other BSM may be sensitive to RPV.
 - Should reinterpret these as well!

RPC meets RPV:

- ATLAS reinterpreted <u>prompt</u> SUSY (RPC+RPV) and exotics searches.
 - Set limits on RPV coupling strengths in multiple BNV (UDD) models.
- ATLAS Run 1 summary of RPV with LNV (LLE, LQD, bRPV) [1].

Facilitating reinterpretations:

- CMS has published simplified likelihoods for their multi-bin analyses [2].
- ATLAS has started publishing full likelihoods using pyhf [3].
- Using CheckMATE to set limits on RPV CMSSM (LNV & BNV) [4].

Projections to Future Colliders

European Strategy Yellow Report [1]:

- LHCb had only explicit RPV projection (pg 698, more info [2]).
- Search for long-lived neutralinos.
 - $h \to \tilde{\chi}_1^0 \ \tilde{\chi}_1^0, \ \tilde{\chi}_1^0 \to \mu qq \text{ via LQD.}$
- Projected exclusion made in $\tilde{\chi}_1^0$ mass-lifetime plane for Runs 3, 4, 5.
 - For various $B(h \to \tilde{\chi}_1^0 \, \tilde{\chi}_1^0)$.

Can other BSM projections be easily translated to RPV SUSY?

Fig. 4.2.5: Projected sensitivities of the search for RPV supersymmetric neutralinos decaying semileptonically and produced through a Higgs boson exotic decay. The results are extrapolated from Run-1 results (top left), for luminosities of $23~{\rm fb}^{-1}$ (top right), $50~{\rm fb}^{-1}$ (bottom left) and $300~{\rm fb}^{-1}$ (bottom right). The results are presented in terms of the excluded parameter space of the neutralinos for different upper limits at 95% C.L. on the branching fractions of the Higgs boson decay.

Projections to Future Colliders

Can other BSM projections be easily translated to RPV SUSY?

- Scalar leptoquarks → squarks with LQD decays:
 - CMS projections to HL-LHC:
 - Pair production of LQs, decay to $t\tau/t\mu$ [1].
 - Single & pair production of LQs, decay to $b\tau$ [2].
 - Yellow report projection to HE-LHC:
 - Pair production of LQs, decay to $b\tau$ (pg 726).
- Long-lived smuons search:
 - Displaced muons with CMS at HL-LHC (pg 697, more info [3]).
 - Translate $\tilde{\mu} \to \mu + \tilde{G}$ (GMSB) to $\tilde{\mu} \to \mu + \nu$ (LLE RPV).
- Type-III seesaw heavy leptons $\rightarrow \tilde{\chi}_1^0 / \tilde{\chi}_1^{\pm}$ in bRPV models?

Summary

- Presented ATLAS and CMS searches for RPV SUSY with LNV.
 - Targeting both short- and long-lived LSPs.
- Variety of production modes, mass spectra, allowed couplings.
 - Diverse set of final states.
- Explicit interpretations for simplified models.
 - MSSM with trilinear RPV $(\lambda, \lambda', \lambda'')$.
 - More extended frameworks (B L, Dynamical RPV).

- Sensitivity of these searches to new physics extends beyond the simplified models, and even SUSY.
 - Existing analyses, targeting SUSY or otherwise, are sensitive to RPV SUSY → Need RPV (re)interpretations.
- Projections for RPV SUSY to the HL-LHC and beyond are a bit lacking.
 - It's a great time to get involved!
 - Ideas?

Backup

R-Parity In the MSSM

What is R-Parity?

- Multiplicative quantum number defined as $R = (-1)^{3(B-L)+2s}$.
 - R = +1 for SM particles.
 - R = -1 for supersymmetric partners.

R-parity violating decay

Minimal Supersymmetric Standard Model with RPV:

R-parity is not a symmetry of the most general MSSM Lagrangian.

$$W_{R_p} = \left| \mu_i \, H_u L_i \, + \, \frac{1}{2} \, \lambda_{ijk} \, L_i L_j E_k^c \, + \, \lambda'_{ijk} \, L_i Q_j D_k^c \, \right| + \left| \frac{1}{2} \, \lambda''_{ijk} \, U_i^c D_j^c D_k^c \, \right|$$
Lepton number violating Baryon number violating

- Often impose R-parity conservation to prevent these terms.
 - Baryon and lepton number are conserved → proton is stable.
 - Bonus: "SUSY-ness" is conserved → the lightest supersymmetric particle (LSP) is neutral and stable → dark matter candidate.

Projections to Future Colliders

European Strategy Yellow Report [1]:

- LHCb had only explicit RPV projection (pg 698, more details [2]).
 - $h \to \tilde{\chi}_1^0 \, \tilde{\chi}_1^0$, $\tilde{\chi}_1^0 \to \mu q q$ via via LQD term.
 - $\tilde{\chi}_1^0$ is long-lived.

Can other BSM search projections be easily translated for RPV?

- Scalar leptoquarks → LQD decays of squarks.
 - CMS projections to HL-LHC:
 - Pair production, decay to t + τ or t + μ [link].
 - Single & pair production, decay to $b + \tau$ [link].
 - Yellow report projection to HE-LHC:
 - Pair production, decay to $b + \tau$ (pg 734).
- LLP searches:
 - Displaced muons with CMS at HL-LHC (pg 697, more info [link]).
 - Translate GMSB RPC $\tilde{\mu} \rightarrow \mu + \tilde{G}$ to LLE RPV $\tilde{\mu} \rightarrow \mu + \nu$?

Need more projections, especially beyond the HL-LHC!

Fig. 4.2.5: Projected sensitivities of the search for RPV supersymmetric neutralinos decaying semileptonically and produced through a Higgs boson exotic decay. The results are extrapolated from Run-1 results (top left), for luminosities of 23 fb^{-1} (top right), 50 fb^{-1} (bottom left) and 300 fb^{-1} (bottom right). The results are presented in terms of the excluded parameter space of the neutralinos for different upper limits at 95% C.L. on the branching fractions of the Higgs boson decay.

RPV searches with BNV

PATLAS Search for squarks & gluinos in final states with SS leptons and jets

arXiv:1909.08457

Analysis Overview:

- Require 2/3 SS leptons + jets.
- Define 5 overlapping SRs, fit independently.

Dedicated RPV SR:

- Require 2 SS leptons, $N_{\rm iets} \ge 6$, and $m_{\rm eff} > 2.6$ TeV.
 - $m_{\rm eff} = {\rm scalar} \; p_T \; {\rm sum} \; {\rm of} \; {\rm all} \; {\rm leptons}, \; {\rm jets}, \; {\rm and} \; {\rm the} \; E_{\rm T}^{\rm miss}.$
- Defined inclusively → sensitive to many RPV scenarios.

- No significant excess above SM background.
- Also set exclusions for $\tilde{g} \rightarrow tbs/tbd$.
 - But assume intermediate stop is on-shell → 2D mass scan.
 - Exclude gluino masses up to 1.6 TeV.

Search for gluinos in final states with large jet multiplicities

ATLAS-CONF-2020-002

Target models:

- Gluino pair production in a variety of RPC and RPV models.
 - All with large jet multiplicities and real $E_{\rm T}^{\rm miss}$.
- Same RPV model as ATLAS SS/3L search.
 - Real $E_{\rm T}^{\rm miss}$ from $t \to \tau_{\rm had} \nu + b$.

SR strategy:

- Perform 3 separate multi-bin fits, requiring $N_{\text{jets}} \ge 8, 9, 10$.
 - Further binning in $N_{\text{b-jets}}$ and $M_{\text{J}}^{\Sigma} = \sum_{i} m_{j}^{R=1.0}$.

- No significant excess over SM background.
- For RPV scenario, exclude gluino masses up to 1.5 TeV.
 - Can compare with ATLAS SS/3L exclusion contours.

Search for BSM phenomena in events with large b-jet multiplicities

ATLAS-CONF-2020-016

Final State:

- Large b-jet multiplicity, no leptons, and low $E_{\rm T}^{\rm miss}$.
 - First LHC search in this final state.

$$\mathrm{BR}(\tilde{t}\to b\;\tilde{\chi}_1^\pm)=100\%$$

Light stop & higgsino LSPs \rightarrow natural

$$BR(\tilde{t} \to b \; \tilde{\chi}_1^{\pm}) = 50\%$$

$$BR(\tilde{t} \to t \; \tilde{\chi}^0_{1,2}) = 50\%$$

Benchmark RPV models:

- Stop pair production with different available decay paths.
- Charginos and neutralinos decay via UDD RPV coupling (λ''_{323}) .

SR Strategy:

• Simultaneously fit 8 orthogonal SRs, binned in N_i and N_b .

Search for BSM phenomena in events with large b-jet multiplicities

ATLAS-CONF-2020-016

Exclusions:

- No observed excess over background prediction.
- Exclude stop masses up to 950 GeV in these models.

More info on CMS displaced jet tagger

CMS-EXO-19-011

Training:

- Developed a DNN for tagging jets from LLP decays.
- Trained on split SUSY models with RPC.
 - Pair production of long-lived gluinos, $\tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$

Evaluation:

- Calculate expected exclusions for the split SUSY model.
- Compare with a "conventional" analysis.
 - Inclusive search in final states with jets and $p_{\rm T}^{\rm miss}$.

Generalizability:

- Evaluate performance on GMSB and RPV models.
 - $\tilde{t}\tilde{t}$ production, with $\tilde{t} \to bl$ via LQD term (λ').
 - $m(\tilde{t}) = 1200 \text{ GeV}.$
- Similar performance across models.

CMS-EXO-19-011

Training:

- Developed a DNN for tagging jets from LLP decays.
- Trained and evaluated on jets from split SUSY models with RPC.
 - Pair production of long-lived gluinos, $\tilde{g} \to q \bar{q} \tilde{\chi}_1^0$.
 - Use variety of $m(\tilde{g}) \& m(\tilde{\chi}_1^0) \rightarrow$ range of jet momenta.
- Detector signature strongly depends on $c\tau_0$.
 - · Provide as an external parameter to DNN.
 - Perform hypo testing over wide $c\tau_0$ range with a single network.

Evaluation:

- Calculate expected CLs limits on split SUSY model.
 - Compare with inclusive SUSY search with jets and $p_{\rm T}^{\rm miss}$.
 - Test both large and small $\Delta M = m(\tilde{g}) m(\tilde{\chi}_1^0)$.
- Stronger exclusions for $c\tau_0 \gtrsim 1$ mm.
 - Lose sensitivity at low $c\tau_0$ due to proximity to primary pp interaction vertex.

Generalizability:

- Evaluate performance on GMSB and RPV models.
- RPV model:
 - $\tilde{t}\tilde{t}$ production, with $\tilde{t} \to bl$ via LQD term (λ') .
 - $m(\tilde{t}) = 1200 \text{ GeV}, c\tau = 1 \text{ mm or } 1 \text{ m}.$

- Jet flavor composition varies significantly across models.
 - Split SUSY → uds quarks from LL gluino decay.
 - GMSB → gluons from LL gluino decay.
 - RPV → b hadrons from LL stop decay.

→ Similar performance for each model.

CMS-EXO-19-011

Overview:

- Classifies jets as originating from b, c, uds, g, or LLP.
- Classification training done using jets from split SUSY (range of $m_{\tilde{g}}, m_{\tilde{\chi}}, \tau_{\tilde{g}}$), W+jets, and ttbar MC.
- Domain adaptation by backpropagation of errors → Mitigate differences in classification performance between MC and data.

Input:

Charged PF candidates:

- Kinematic properties of associated track (absolute and relative to jet axis).
- Track quality.
- Transverse+3D impact params (and their significances).

Neutral PF candidates:

- Energy, fraction of energy deposited in ECAL and HCAL.
- Compatibility with photon, PU hypotheses.
- Collinearity with respect to jet axis and the nearest secondary vertex.
 Secondary vertices:
- · Kinematic properties.
- number of associated tracks.
- 3D displacement from the PV.

Global jet features:

- Jet momentum and eta
- Number of constituent PF candidates and recon. secondary vertices.
- CSV b-tagging algorithm variables.

LLP lifetime hypothesis.

ATLAS RPV meets RPC

Reinterpretations for variable RPV coupling strength and long-lived R-hadrons

ATLAS-CONF-2018-003

Filling in the gaps:

- Depending on RPV coupling strengths, LSP can be:
 - Stable (at least on collider scales).
 - Long-lived with displaced decays.
 - · Short-lived with prompt decays.
- Prompt RPC and RPV analyses were reinterpreted in models with variable coupling strength.
- Multiple models considered with non-zero UDD coupling (λ''), including:

Reinterpretations for variable RPV coupling strength and long-lived R-hadrons

ATLAS-CONF-2018-003

Stop decays via λ_{323}'' :

- Set limits on stop mass for a wide range of λ_{323}'' .
- $\tilde{\chi}_1^0$ assumed to be bino, with $m(\tilde{\chi}_1^0) = 200$ GeV.
 - Bino → no nearby chargino → fewer decays.
 - Also, nature of $\tilde{\chi}_1^0$ matters since decay requires off-shell stop, and higgsinos have a larger coupling to stops.
- Show contours for various \tilde{t} lifetimes and BR($\tilde{t} \rightarrow bs$).
 - As λ_{323}'' increases:
 - \tilde{t} lifetime decrease.
 - Direct $\tilde{t} \to bs$ decay takes over $\tilde{t} \to t\tilde{\chi}_1^0 (\to tbs)$.
- Limits account for single stop production at high λ_{323}'' .
 - $\frac{\sigma_{\rm single}}{\sigma_{\rm pair}} > 10^2$ for $m(\tilde{t}) = 500$ GeV, $\lambda_{323}'' = 1$.

Reinterpretations for variable RPV coupling strength and long-lived R-hadrons

ATLAS-CONF-2018-003

Jet multiplicity increase as lifetime of bino LSP decreases.

Summary plots

Overview of CMS long-lived particle searches

Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included). The y-axis tick labels indicate the studied long-lived particle.

From CMS Exotica <u>public results</u>.

July 2020 $\sqrt{s} = 13 \text{ TeV}$ Model **Signature** $\int \mathcal{L} dt \, [fb^{-1}]$ **Mass limit** Reference Long-lived particles 36.1 Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^{\pm}$ Disapp. trk 0.46 1712.02118 Pure Wino 0.15 Pure higgsino ATL-PHYS-PUB-2017-019 Stable § R-hadron Multiple 36.1 2.0 1902.01636,1808.04095 2.05 2.4 Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq\tilde{\chi}_1^0$ Multiple 36.1 $\tilde{g} = [\tau(\tilde{g}) = 10 \text{ ns}, 0.2 \text{ ns}]$ $m(\tilde{\chi}_1^0)=100 \text{ GeV}$ 1710.04901,1808.04095 $\tilde{X}_{1}^{\pm}\tilde{X}_{1}^{\mp}/\tilde{X}_{1}^{0}, \tilde{X}_{1}^{\pm} \rightarrow Z\ell \rightarrow \ell\ell\ell$ $\tilde{X}_{1}^{\mp}/\tilde{X}_{1}^{0}$ [BR($Z\tau$)=1, BR(Ze)=1] $3e,\mu$ 0.625 1.05 139 Pure Wino ATLAS-CONF-2020-009 LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$ $e\mu$, $e\tau$, $\mu\tau$ $\lambda'_{311}=0.11, \lambda_{132/133/233}=0.07$ 3.2 1.9 1607.08079 $\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}/\tilde{\chi}_{2}^{0} \rightarrow WW/Z\ell\ell\ell\ell\nu\nu$ 4 e. µ 36.1 $\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0 \quad [\lambda_{i33} \neq 0, \lambda_{12k} \neq 0]$ 0.82 1.33 $m(\tilde{\chi}_1^0)=100 \text{ GeV}$ 1804.03602 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq$ Large $\lambda_{112}^{\prime\prime}$ $[m(\tilde{X}_{1}^{\theta})=200 \text{ GeV}, 1100 \text{ GeV}]$ $[\lambda''_{11}=2e-4, 2e-5]$ 4-5 large-R jets 36.1 1.3 1.9 1804.03568 Multiple 36.1 1.05 2.0 $m(\tilde{\chi}_1^0)=200$ GeV, bino-like ATLAS-CONF-2018-003 $\tilde{t}\tilde{t}, \tilde{t} \rightarrow t\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow tbs$ Multiple 36.1 \tilde{t} [$\lambda_{111}'' = 2e-4, 1e-2$] 0.55 1.05 $m(\tilde{\chi}_1^0)=200$ GeV, bino-like ATLAS-CONF-2018-003 $\tilde{t}\tilde{t}, \tilde{t} \rightarrow b\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^{\pm} \rightarrow bbs$ $\geq 4b$ 139 Forbidden 0.95 $m(\tilde{\chi}_1^{\pm})=500 \text{ GeV}$ ATLAS-CONF-2020-016 $\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow bs$ 2 jets + 2 b 36.7 0.42 1710.07171 \tilde{t}_1 [qq, bs] 0.61 $\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow q\ell$ $BR(\tilde{t}_1 \rightarrow be/b\mu) > 20\%$ $2e, \mu$ 26 36.1 0.4-1.45 1710.05544 \tilde{t}_1 [1e-10< λ'_{24} <1e-8, 3e-10< λ'_{24} <3e-9] DV 136 1.0 1.6 $BR(\tilde{t}_1 \rightarrow q\mu) = 100\%$, $cos\theta_t = 1$ 2003.11956

From ATLAS SUSY <u>public results</u>.

ATLAS SUSY Searches* - 95% CL Lower Limits

 10^{-1}

*Only a selection of the available mass limits on new states or

phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

Mass scale [TeV]

ATLAS Preliminary

RPV Summary Plots

- From ATLAS SUSY <u>public results</u>.
- Assumes decay mode listed in legend occurs with 100% BR.
- Assumes decays are prompt.

Other

CMS SS/3L CMS Displaced jets (LL)

mg

ATLAS SS/3L ATLAS multijet

- Pair produced gluinos, $\tilde{g} \rightarrow tbs/tbd$.
 - Via RPV UDD coupling (λ'') .
 - *s*, *d* indistinguishible in detector.
- Above diagonal, stop is off-shell → 3-body decay.
 - 1 CMS search with prompt decay.
 - 1 CMS search with displaced decay.
- Below diagonal, stop is on-shell → have to scan over stop mass as well.
 - 2 ATLAS searches with prompt decays.

